کنترل پرواز هواپیمای ناپایدار بر اساس نابرابری ماتریسی خطی با احتساب قیود کنترلی و اشباع

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهید بهشتی

چکیده

در این مقاله از محدودیت در ظرفیت عملگرها به عنوان نقش کلیدی در طراحی سیستم کنترل پرواز هواپیما استفاده شده است. به منظور تضمین عملکرد و پایداری سیستم‌های کنترل پرواز در حضور اشباع، در ناحیه پرواز در زوایای حمله بالا، توسعه روش نابرابری ماتریسی خطی، روش‌های بهینه‌سازی و روش‌های حل عددی مطرح می‌شود. همچنین در این مقاله، تلفیق دو روش ضدجمع‌شوندگی و روش مستقیم اشباع، در مساله ردیابی زاویه مسیر پرواز بحث شده است. برای این هدف، مدل غیرخطی هواپیمای مورد بررسی مدل‌سازی و شبیه‌سازی شده و مدل خطی در نقاط شرایط کاری تریم بدست آمده است. سپس کنترل‌کننده نامی برای مانور ردیابی زاویه مسیر پرواز بدون در نظر گرفتن اشباع طراحی شده است. در ادامه با در نظر گرفتن ماکزیمم اغتشاش وارده بر مانور هواپیما، کنترل‌کننده امن که تضمین عملکرد و پایداری را داشته‌باشد طراحی شده و روش زمان‌بندی بهره‌ها برای جلوگیری از محافظه‌کاری در استفاده از کنترل‌کننده‌ها اعمال می‌شود. نتایج برای مدل غیرخطی و خطی هواپیمای مورد بررسی در ردیابی زاویه مسیر پرواز در زوایای حمله بالا با احتساب قیود کنترلی و اشباع در حالت شرایط کاری ناپایدار ارائه می‌شود. نتایج شبیه‌سازی بیانگر بهبود روش کنترلی فوق برای هواپیمای ناپایدار می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Unstable Aircraft Flight Control Based on Linear Matrix Inequality with Consideration of Control and Saturation Constraints

نویسندگان [English]

  • M. Navabi
  • Hamed ghafari
Shahid Beheshti University
چکیده [English]

In this paper, limitation in actuator capacity has been used as a key role in the design of the flight control system. In order to guarantee the performance and stability of flight control systems in the presence of saturation, in flying high angle of attack area, the development of linear matrix inequality, optimization techniques, and numerical methods are proposed. Also, in this paper, the combination of two anti-windup methods and the direct saturation method in the tracking problem of the flight path angle is discussed. For this purpose, the nonlinear model of the aircraft is modeled, moreover the linear model is obtained at the trim operation conditions. Then the controller is designed to track flight path angle maneuver regardless of saturation. In the following, considering the maximum disturbance involved in aircraft maneuvering, a safe controller that guarantees performance and stability is designed, and the gain scheduling technique to prevent conservatism in the use of controllers is applied. The results of the nonlinear and linear model of the aircraft are presented in tracking flight path angle atahigh angle of attack with consideration of control and saturation constraints in unstable operation conditions. Simulation results indicate the improvement of the mentioned control method for an unstable aircraft. 

کلیدواژه‌ها [English]

  • Control constraint
  • Saturation constraint
  • Linear matrix inequality
  • Gain scheduling
  • Anti-windup controller
[1] M. Dornhein, Report pinpoints factors leading to YF-22 crash, Aviation Week & Space Technology, 9 (1992) 53-54.
[2] I.E. Kose, F. Jabbari, Control of systems with actuator amplitude and rate constraints, in:  Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), IEEE, 2001, pp. 4914-4919.
[3] A. Cristofaro, S. Galeani, S. Onori, L. Zaccarian, A switched and scheduled design for model recovery anti-windup of linear plants, European Journal of Control, 46 (2019) 23-35.
[4] L. Zaccarian, A.R. Teel, Modern anti-windup synthesis: control augmentation for actuator saturation, Princeton University Press, 2011.
 [5] S. Al-Haddad, H. Wahid, Decoupled Integral Lqr Controller With Anti-Windup Compensator For Mimo Two Rotor Aerodynamical System (Tras), Journal of Engineering Science and Technology, Vol. 14, No. 3 (2019) 1374 - 1397.
[6] S. Sajjadi-Kia, F. Jabbari, Use of scheduling for anti-windup controller design, in:  2007 American Control Conference, IEEE, 2007, pp. 5194-5199.
[7] S. Sajjadi-Kia, F. Jabbari, Scheduling in anti-windup controllers: output feedback case, in:  2007 46th IEEE Conference on Decision and Control, IEEE, 2007, pp. 408-413.
[8] M.S. Reineh, S.S. Kia, F. Jabbari, Anti-Windup Designs for Systems With Amplitude and Rate Bounded Actuators, IFAC-PapersOnLine, 50(1) (2017) 11509-11514.
[9] M. Rahman, M. Armin, S.K. Das, M. Ali, High Performance Controller Design Using Linear Matrix Inequalities for Pitch Angle Regulation of Aircraft, in:  2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), IEEE, 2019, pp. 1-6.
[10] E.F. Mulder, M.V. Kothare, M. Morari, Multivariable anti-windup controller synthesis using linear matrix inequalities, Automatica, 37(9) (2001) 1407-1416.
[11] G. Leonov, B. Andrievskii, N. Kuznetsov, A.Y. Pogromskii, Aircraft control with anti-windup compensation, Differential equations, 48(13) (2012) 1700-1720.
[12] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Siam, 1994.
[13] P. Gahinet, A. Nemirovskii, A.J. Laub, M. Chilali, The LMI control toolbox, in:  Proceedings of 1994 33rd IEEE Conference on Decision and Control, IEEE, 1994, pp. 2038-2041.
[14] S.-K. Yang, Observer-based anti-windup compensator design for saturated control systems using an LMI approach, Computers & Mathematics with Applications, 64(5) (2012) 747-758.
[15] G.A. Kiener, D. Lehmann, K.H. Johansson, Actuator saturation and anti-windup compensation in event-triggered control, Discrete event dynamic systems, 24(2) (2014) 173-197.
[16] A.R. Teel, N. Kapoor, The L 2 anti-winup problem: Its definition and solution, in:  1997 European Control Conference (ECC), IEEE, 1997, pp. 1897-1902.
[17] J.-H. Kim, F. Jabbari, A scheduling approach for tracking of general signals, International Journal of Control, 81(8) (2008) 1281-1290.
[18] B.L. Stevens, F.L. Lewis, E.N. Johnson, Aircraft control and simulation: dynamics, controls design, and autonomous systems, John Wiley & Sons, 2015.
[19] I.E. KöSe, F. Jabbari, Scheduled controllers for linear systems with bounded actuators, Automatica, 39(8) (2003) 1377-1387.