[1] H. Takuda, K. Mori, N. Hatta, The application of some criteria for ductile fracture to the prediction of the forming limit of sheet metals, Journal of Materials Processing Technology, 95(1) (1999) 116-121.
[2] X. Ma, F. Li, J. Li, Q. Wang, Z. Yuan, Y. Fang, Analysis of forming limits based on a new ductile damage criterion in St14 steel sheets, 2015.
[3]R. Hill, On discontinuous plastic states, with special reference to localized necking in thin sheets, Journal of the Mechanics and Physics of Solids, 19-30 (1952) (1) 1.
[4] R. Hill, A general theory of uniqueness and stability in elastic-plastic solids, Journal of the Mechanics and Physics of Solids, 6(3) (1958) 236-249.
[5] G. Borré, G. Maier, On linear versus nonlinear flow rules in strain localization analysis, Meccanica, 24(1) (1989) 36-41.
[6] J. Rudnicki, J. Rice, Condition for the Localization of Deformation in Pressure-Sensitive Dilatant Materials, 1975.
[7] C.L. Chow, M. Jie, X. Wu, Localized Necking Criterion for Strain-Softening Materials, Journal of Engineering Materials and Technology, 127(3) (2005) 273-278.
[8] M.K. Neilsen, H.L. Schreyer, Bifurcations in elastic-plastic materials, International Journal of Solids and Structures, 30(4) (1993) 521-544.
[9] C.L. Chow, M. Jie, X. Wu, A Damage-coupled Criterion of Localized Necking Based on Acoustic Tensor, International Journal of Damage Mechanics, 16(3) (2007) 265-281.
[10] L. Szabó, Comments on loss of strong ellipticity in elastoplasticity, International Journal of Solids and Structures, 37575-3806 (2000) (28)37.
[11] D. Bigoni, T. Hueckel, Uniqueness and localization—I. Associative and non-associative elastoplasticity, International Journal of Solids and Structures, 28(2) (1991) 197-213.
[12] N.S. Ottosen, K. Runesson, Properties of discontinuous bifurcation solutions in elasto-plasticity, International Journal of Solids and Structures, 27(4) (1991) 401-421.
[13] K.L. Nielsen, Ductile damage development in friction stir welded aluminum (AA2024) joints, Engineering Fracture Mechanics, 75(10) (2008) 2795-2811.
[14] Z. Marciniak, K. Kuczyński, Limit strains in the processes of stretch-forming sheet metal, International Journal of Mechanical Sciences, 9(9) (1967) 609-620.
[15] Z. Marciniak, K. Kuczyński, T. Pokora, Influence of the plastic properties of a material on the forming limit diagram for sheet metal in tension, International Journal of Mechanical Sciences, 15(10) (1973) 789-800.
[16] A. Zajkani, A. Bandizaki, An efficient model for diffuse to localized necking transition in rate-dependent bifurcation analysis of metallic sheets, International Journal of Mechanical Sciences, 133(Supplement C) (2017) 794-803.
[17] A. Zajkani, A. Bandizaki, A path-dependent necking instability analysis of the thin substrate composite plates considering nonlinear reinforced layer effects, The International Journal of Advanced Manufacturing Technology, (2017.(
[18]S. Stören, J.R. Rice, Localized necking in thin sheets, Journal of the Mechanics and Physics of Solids, 23(6) (1975) 421-441.
[19] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, International journal of plasticity, 24(6) (2008) 1071-1096.
[20] C.H.M. Simha, S. Xu, W. Tyson, Non-local phenomenological damage-mechanics-based modeling of the Drop-Weight Tear Test, Engineering Fracture Mechanics, 118 (2014) 66-82.
[21] S.B. Kim, H. Huh, H.H. Bok, M.B. Moon, Forming limit diagram of auto-body steel sheets for high-speed sheet metal forming, Journal of Materials Processing Technology, 211(5) (2011) 851-862.
[22] S. Balasubramanian, L. Anand, Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures, Journal of the Mechanics and Physics of Solids, 50(1) (2002) 101-126.
[23] J.H. Kim, J.H. Sung, K. Piao, R. Wagoner, The shear fracture of dual-phase steel, International Journal of Plasticity, 27(10) (2011) 1658-1676.
[24] Y. Lou, J.W. Yoon, H. Huh, Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality, International Journal of Plasticity, 54 (2014) 56-80.
[25] X. Sun, K.S. Choi, W.N. Liu, M.A. Khaleel, Predicting failure modes and ductility of dual phase steels using plastic strain localization, International Journal of Plasticity, 25(10) (2009) 1888-1909.
[26] G. Gruben, E. Fagerholt, O.S. Hopperstad, T. Børvik, Fracture characteristics of a cold-rolled dual-phase steel, European Journal of Mechanics-A/Solids, 30(3) (2011) 204-218.
[27] K. Chung, N. Ma, T. Park, D. Kim, D. Yoo, C. Kim, A modified damage model for advanced high strength steel sheets, International Journal of Plasticity, 27(10) (2011) 1485-1511.
[28] H. Huh, S.-B. Kim, J.-H. Song, J.-H. Lim, Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body, International Journal of Mechanical Sciences, 50(5) (2008) 918-931.
[29] S. Curtze, V.-T. Kuokkala, M. Hokka, P. Peura, Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates, Materials Science and Engineering: A, 507(1) (2009) 124-131.
[30] G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands, 1983, pp. 541-547.
[31] A.H. Clausen, T. Børvik, O.S. Hopperstad, A. Benallal, Flow and fracture characteristics of aluminium alloy AA5083–H116 as function of strain rate, temperature and triaxiality, Materials Science and Engineering: A, 364(1). 260-272 (2004).
[32] B. Erice, F. Gálvez, D. Cendón, V. Sánchez-Gálvez, Flow and fracture behaviour of FV535 steel at different triaxialities, strain rates and temperatures, Engineering Fracture Mechanics, 79 (2012) 1-17.
[33] M. Jie, Generalized criteria for localized necking in sheet metal forming, 2003.
[34] M. Saradar, A. Basti, M. Zaeimi, Numerical study of the effect of strain rate on damage prediction by dynamic forming limit diagram in high velocity sheet metal forming, Modares Mechanical Engineering, 14(16) (2015.( (in persian)
[35] W. Hosford, A generalized isotropic yield criterion, Journal of Applied Mechanics, 39(2) (1972) 607-609.
[36] H.-Y. Wu, P.-H. Sun, H.-W. Chen, C.-H. Chiu, Rate and Orientation Dependence of Formability in Fine-Grained AZ31B-O Mg Alloy Thin Sheet, Journal of Materials Engineering and Performance, 21(10) (2012) 2124-2130.
[37] D. Kim, H. Kim, J.H. Kim, M.-G. Lee, K.J. Kim, F. Barlat, Y. Lee, K. Chung, Modeling of forming limit for multilayer sheets based on strain-rate potentials, International Journal of Plasticity, 75(Supplement C) (2015) 63-99.
[38] O.E. Fakir, L. Wang, D. Balint, J.P. Dear, J. Lin, Predicting Effect of Temperature, Strain Rate and Strain Path Changes on Forming Limit of Lightweight Sheet Metal Alloys, Procedia Engineering, 81(Supplement C) (2014) 736-741.
[39] P. Verleysen, J. Peirs, J. Van Slycken, K. Faes, L. Duchene, Effect of strain rate on the forming behaviour of sheet metals, Journal of Materials Processing Technology, 211(8) (2011) 1457-1464.