[1] H. Glauert, Airplane propellers, in: Aerodynamic theory, Springer, 1935, pp. 169-360.
[2] X. Liu, C. Lu, S. Liang, A. Godbole, Y. Chen, Influence of the vibration of large-scale wind turbine blade on the aerodynamic load, Energy Procedia, 75 (2015) 873-879.
[3] T. Macquart, A. Maheri, K. Busawon, Improvement of the accuracy of the blade element momentum theory method in wind turbine aerodynamics analysis, in: 2012 2nd International Symposium On Environment Friendly Energies And Applications, IEEE, 2012, pp. 402-405.
[4] A. Maheri, S. Noroozi, C. Toomer, J. Vinney, Damping the fluctuating behaviour and improving the convergence rate of the axial induction factor in the BEMT-based rotor aerodynamic codes, in: European Wind Energy Conference & Exhibition, Athens, Greece, 2006, pp. 1e4.
[5] P.J. Moriarty, A.C. Hansen, AeroDyn theory manual, National Renewable Energy Lab., Golden, CO (US), 2005.
[6] S. Gupta, J.G. Leishman, Dynamic stall modelling of the S809 aerofoil and comparison with experiments, Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 9(6) (2006) 521-547.
[7] R. Pereira, G. Schepers, M.D. Pavel, Validation of the Beddoes–Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data, Wind Energy, 16(2) (2013) 207-219.
[8] I. Milne, A. Day, R. Sharma, R. Flay, The characterisation of the hydrodynamic loads on tidal turbines due to turbulence, Renewable and Sustainable Energy Reviews, 56 (2016) 851-864.
[9] I. Milne, A. Day, R. Sharma, R. Flay, Blade loads on tidal turbines in planar oscillatory flow, Ocean Engineering, 60 (2013) 163-174.
[10] G.T. Scarlett, B. Sellar, T. van den Bremer, I.M. Viola, Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions, Renewable Energy, 143 (2019) 199-213.
[11] G. Ingram, Wind turbine blade analysis using the blade element momentum method. version 1.1, Durham University, Durham, (2011).
[12] M. Sriti, Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal Axis wind turbine blade (HAWT), Tech. Mech., 38(12) (2018) 191-202.
[13] E. Gashtasbi, H. Emdad, E. Salimipur, Investigation of the effect of leading edge shape on the dynamic stall of oscillating wing in two dimensional compressible turbulent flow, 8th Iranian Aerospace Society Conference, Isfahan, Iranian Aerospace Society (in persian) (1388).
[14] L.W. Carr, Progress in analysis and prediction of dynamic stall, Journal of aircraft, 25(1) (1988) 6-17.
[15] M. Faber, A comparison of dynamic stall models and their effect on instabilities, (2018).
[16] W. Sheng, R. Galbraith, F. Coton, A modified dynamic stall model for low Mach numbers, Journal of Solar Energy Engineering, 130(3) (2008) 031013.
[17] T. Beddoes, A third generation model for unsteady aerodynamics and dynamic stall, Westland Helicopter Limited, RP-908, (1993).
[18] H. Wagner, Über die Entstehung des dynamischen Auftriebes von Tragflügeln, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 5(1) (1925) 17-35.
[19] R.T. Jones, The unsteady lift of a wing of finite aspect ratio, (1940).
[20] M.H. Hansen, M. Gaunaa, H.A. Madsen, A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations, (2004).
[21] B. Thwaites, Incompressible aerodynamics: an account of the theory and observation of the steady flow of incompressible fluid past aerofoils, wings, Clarendon Press, 1960.
[22] W. Sheng, R.A.M. Galbraith, F.N. Coton, Applications of low-speed dynamic-stall model to the NREL airfoils, Journal of Solar Energy Engineering, 132(1) (2010) 011006.
[23] J. Janiszewska, R.R. Ramsay, M. Hoffmann, G. Gregorek, Effects of grit roughness and pitch oscillations on the S814 airfoil, National Renewable Energy Lab., Golden, CO (United States), 1996.