تحلیل غیر خطی ناپایداری نوسانات موج چگالی در فرایند جوشش درون یک کانال با استفاده از یک مدل تحلیلی جدید

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.

چکیده

ناپایداری جریان دوفاز در بسیاری از حوزه‌های صنعتی نظیر توربوماشین، سیستم‌های تبرید، راکتور آب جوشان مشاهده می‌شود. پیش‌بینی پارامتر‌های جریان مانند افت فشار، محدوده پایداری و مشخصات نوسانات، عوامل تعیین کننده‌ای در طراحی و شرایط ایمنی کارکرد تجهیزات است. در این مقاله ناپایداری نوسانات موج چگالی جریان سیال دوفاز در فرایند جوششی مورد تحلیل قرار گرفته ‌است. با معرفی متغیرهای بدون بعد، یک مدل یکپارچه برای فرایند ارائه شده ‌است. با آنالیز عددی مدل، به وسیله کاربرد یک روش توسعه یافته مبتنی بر روش عددی "وزن دادن به مانده‌ها"، مدل جهت دست‌یابی به پاسخ سیستم برای شرایط پایا حل شده‌است. محدوده ناپایداری بر روی صفحه با مختصات فرکانس واکنش و نسبت فرکانس واکنش به سرعت جرمی ورودی با استفاده از تحلیل انجام شده مشخص شده‌ است و همچنین تاثیر عدد اصطکاکی بر آن مورد بررسی قرار گرفته ‌است. تاثیر افزایش سرعت جرمی، میزان مادون سرد بودن، تغییرات فشار و سایر پارامتر‌های مهم فرایند بر مشخصات نوسانات و همینطور محدوده ناپایداری بررسی شده ‌است. نتایج نشان می‌دهد با افزایش سرعت جرمی، سیستم نسبت به رخداد نوسانات موج چگالی پایدارتر می‌گردد. کیفیت بحرانی بخار خروجی نیز با افزایش سرعت جرمی کاهش می‌یابد و دروه تناوب نوسانات موج چگالی و دامنه آن با افزایش سرعت جرمی افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of Density Wave Oscillations in a Boiling Channel by a New Analytical Model

نویسندگان [English]

  • Mohammad Reza Shahnazari
  • Ashkan Amjadigolpayegani
  • Ali Saberi
Department of Mech. Eng., K. N. Toosi University of Technology, Tehran, Iran.
چکیده [English]

Two-phase flow instabilities are observed in many areas of industrial applications such as turbomachinery, refrigeration systems, water boiling reactors and similar systems. Predicting fluid flow parameters such as pressure drop, stability region during boiling and oscillation characteristics are the determining factors in the design of two-phase flow equipment. In this paper, density wave oscillations type instability in boiling process is analyzed. By introducing appropriate dimensionless variables, an integrated model for the process is presented. The model is solved for steady state response of the system by using numerical analysis of a developed numerical method based on weighted residual method. Stability region is determined in reaction frequency versus ratio of reaction frequency to inlet mass flow plane. In addition, friction number effect on stability threshold is assessed. The effect of mass flow rate, inlet subcooling, system pressure and other important process parameters on the oscillation characteristics as well as the instability boundary are investigated. The results show that with increasing mass flow, the system becomes more stable for density wave oscillations occurrence. The critical quality of the exhaust vapor also decreases with increasing mass flow. On the other hand, the period of oscillations and its amplitude increases with increasing mass flow.

کلیدواژه‌ها [English]

  • Two phase flow
  • Instability
  • Density wave oscillations
  • Boiling
  • Nonlinear dynamic
[1] L.C. Ruspini, C.P. Marcel, A. Clausse, Two-phase flow instabilities: A review, International Journal of Heat and Mass Transfer, 71(0) (2014) 521-548.
[2] L. Tadrist, Review on two-phase flow instabilities in narrow spaces, International Journal of Heat and Fluid Flow, 28(1) (2007) 54-62.
[3] J.H. Lienhard, L.C. Witte, An historical review of the hydrodynamic theory of boiling, Reviews in Chemical Engineering, 3(3-4) (1985) 187-280.
[4] J.A. Boure, A.E. Bergles, L.S. Tong, Review of two-phase flow instability, Nuclear Engineering and Design, 25(2) (1973) 165-192.
[5] S.M. Ghiaasiaan, Two-phase flow, boiling, and condensation: in conventional and miniature systems, Cambridge University Press, 2007.
[6] S.K. Saha, G.P. Celata, Instability in flow boiling in microchannels, Springer, 2016.
[7] L.C. Ruspini, C.A. Dorao, M. Fernandino, Dynamic simulation of Ledinegg instability, Journal of Natural Gas Science and Engineering, 2(5) (2010) 211-216.
[8] H. Gürgenci, T.N. Veziroglu, S. Kakaç, Simplified nonlinear descriptions of two-phase flow instabilities in vertical boiling channel, International Journal of Heat and Mass Transfer, 26(5) (1983) 671-679.
[9] S. Kakac, B. Bon, A Review of two-phase flow dynamic instabilities in tube boiling systems, International Journal of Heat and Mass Transfer, 51(3–4) (2008) 399-433.
[10] G. Yadigaroglu, Two-phase flow instabilities and propagation phenomena, in: J.M. Delhaye (Ed.) Thermohydraulics of two-phase systems for industrial design and nuclear engineering, McGraw-Hill, 1981.
[11] D. Papini, M. Colombo, A. Cammi, M.E. Ricotti, Experimental and theoretical studies on density wave instabilities in helically coiled tubes, International Journal of Heat and Mass Transfer, 68(0) (2014) 343-356.
[12] Q. Wang, X.J. Chen, S. Kakaç, Y. Ding, An experimental investigation of density-wave-type oscillations in a convective boiling upflow system, International Journal of Heat and Fluid Flow, 15(3) (1994) 241-246.
[13] L.S. Tong, Y.S. Tang, Boiling heat transfer and two-phase flow, CRC press, 1997.
[14] G.B. Wallis, J.H. Heasley, Oscillations in Two-Phase Flow Systems, Journal of Heat Transfer, 83(3) (1961) 363-369.
[15] M.J. Atkinson, J.C. Friendly, Limitations of simple models in describing two-phase flow oscillations, Department of Chemical Engineering, University of Rochester, Rochester, New York, 1983.
[16] S. Nakanishi, M. Kaji, S. Yamauchi, An approximation method for construction of a stability map of density-wave oscillations, Nuclear Engineering and Design, 95(0) (1986) 55-64.
[17] R.C. Dykhuizen, R.P. Roy, S.P. Kalra, A Linear Time-Domain Two-Fluid Model Analysis of Dynamic Instability in Boiling Flow Systems, Journal of Heat Transfer, 108(1) (1986) 100-108.
[18] R.T. Lahey Jr, M.Z. Podowski, On the analysis of various instabilities in two-phase flows, Multiphase science and technology, 4(1-4) (1989).
[19] A. Clausse, R.T. Lahey Jr, The analysis of periodic and strange attractors during density-wave oscillations in boiling flows, Chaos, Solitons & Fractals, 1(2) (1991) 167-178.
[20] C. Chin-Jang, R.T. Lahey Jr, Analysis of chaotic instabilities in boiling systems, Nuclear Engineering and Design, 167(3) (1997) 307-334.
[21] Rizwan-Uddin, On density-wave oscillations in two-phase flows, Int. J. Multiphase Flow, 20(4) (1994) 721-737.
[22] W. Ambrosini, P. Di Marco, and J.C. Ferreri., Linear and nonlinear analysis of density wave instability phenomena, Heat and Technology, 18(1) (2000) 27-36.
[23] D. Delmastro, L. Juanicó, A. Clausse, A delay theory for boiling flow stability analysis, International journal of multiphase flow, 27(4) (2001) 657-671.
[24] C.P. Marcel, M. Rohde, T. Van der Hagen, Experimental investigations on the ESBWR stability performance, Nuclear Technology, 164(2) (2008) 232-244.
[25] S. Paruya, S. Maiti, A. Karmakar, P. Gupta, J.P. Sarkar, Lumped parameterization of boiling channel—Bifurcations during density wave oscillations, Chemical Engineering Science, 74(0) (2012) 310-326.
[26] L.C. Ruspini, C. Dorao, M. Fernandino, Two-Phase Flow Instabilities in Boiling and Condensing Systems, Journal of Power and Energy Systems, 6(2) (2012) 302-313.
[27] L.C. Ruspini, Inertia and compressibility effects on density waves and Ledinegg phenomena in two-phase flow systems, Nuclear Engineering and Design, 250(0) (2012) 60-67.
[28] S. Paul, S. Singh, A density variant drift flux model for density wave oscillations, International Journal of Heat and Mass Transfer, 69 (2014) 151-163.
[29] V. Pandey, S. Singh, Characterization of stability limits of Ledinegg instability and density wave oscillations for two-phase flow in natural circulation loops, Chemical Engineering Science, 168 (2017) 204-224.
[30] S. Chen, X. Chen, G. Luo, K. Zhu, L. Chen, Y. Hou, Flow boiling instability of liquid nitrogen in horizontal mini channels, Applied Thermal Engineering, 144 (2018) 812-824.
[31] S. Li, V. Chatoorgoon, S. Ormiston, Numerical study of oscillatory flow instability in upward flow of supercritical water in two heated parallel channels, International Journal of Heat and Mass Transfer, 116 (2018) 16-29.
[32] L.E. O'Neill, I. Mudawar, M.M. Hasan, H.K. Nahra, R. Balasubramaniam, J.R. Mackey, Experimental investigation of frequency and amplitude of density wave oscillations in vertical upflow boiling, International Journal of Heat and Mass Transfer, 125 (2018) 1240-1263.
[33] P. Muir, Optimal discrete and continuous mono‐implicit Runge–Kutta schemes for BVODEs, Advances in Computational Mathematics, 10(2) (1999) 135-167.
[34] P. Muir, M. Adams, Mono-implicit Runge–Kutta–Nyström methods for boundary value ordinary differential equations, Tech. Report 03–2000, Dept. Math. and Comp. Sci., Saint Mary’s University, 2000.