[1] M. Salita, Deficiencies and Requirements in Modeling of Slag Generations in Solid Rocket Motors, Propulsion and Power, 11 (1995) 10-23.
[2] E. Farber, J. Louwers, T. Kaya, Investigation of Metallized and Nonmetallized Hydroxyl Terminated Polybutadiene/Hydrogen Peroxide Hybrid Rockets, Propulsion and Power, 23 (2007) 476-486.
[3] R. Izidoro Reis, W. Kiyoshi Shimote, L. Claudio Pardini, Anomalous Behavior of a Solid Rocket Motor Nozzle Insert During Static Firing Test, Aerosp.Technol.Manag,São José dos Campos, 8 (2016) 483-490.
[4] T. L. Poupoint, T. D. Wood, M. A. Pfeil, J. Tsohas, S. T. Son, Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant, Aerospace Engineering, (2012) 11.
[5] R. Akiba, M. Kohno, Experiments with Solid Rocket Technology in the Development of M-3SII, Acta Astronautica, 13 (1986) 349-361.
[6] Y. M. Xiao, R. S. Amano, Aluminized Composite Solid Propellant Particle Path in the Combustion Chamber of a Solid Rocket Motor, WIT Transactions on Engineering Sciences, 52 (2006) 153-164.
[7] N. Fouladi, A.R Mirbabaei, M. Khosroanjom, Experimental Study of the Supersonic Exhaust Diffuser Spray Cooling System, Amirkabir Journal of Mechnical Engineering, Articles in Press, Available Online from 22 April 2019, DOI:
10.22060/MEJ.2019.15138.6038
[8] K. Yim, K. Kim, S. Kim, A numerical study on flow and heat transfer characteristics of supersonic second throat exhaust diffuser for high altitude simulation, the Korean Society of Propulsion Engineers, 18 (2014) 70-78.
[9] R. Ashokkumar, S. Sankaran, K. Srinivasan, T. Sundararajan, Effects of vacuum chamber and reverse flow on supersonic exhaust diffuser starting, Journal of Propulsion and Power, 31 (2015) 750-754.
[10] C. W. Dennis, A Study of Rocket Exhaust Particles, PhD Thesis, School of Mechanical Engineering, Cranfield University, Cranfield, (1996).
[11] N. Fouladi, A. Mohamadi, H. Rezaei, Numerical Design and Analysis of Supersonic Exhaust Diffuser in Altitude Test Simulator, Modares Mechanical Engineering, 16 (2016) 159 -168. (In Persian)
[12] Nematollah Fouladi, Numerical investigation of back flow arrester effect on altitude test simulator starting performance, Modares Mechanical Engineering, 17 (2017) 185-196. (in Persian)
[13] Ansys Fluent 12.0, Theory Guide, certified to ISO 9001, 2008-2009.
[14] Propulsion Research Group, Thermal Protection of Diffuser Metal Body Using a Cooling System, Tehran, Space Transportation Research Institute, Report number: STRI-SSD9980-01-R, (2018) 1-106. (In Persian)
[15] R. M. Kumaran, T. Sundararajan, D. R. Manohar, Performance Evaluation of Second-throat Diffuser for High Altitude Test Facility, Propulsion and Power, 26 (2010) 248-258.
[16] H. W. Yeom, S. Yoon, H. G. Sung, Flow Dynamics at the Minimum Starting Condition of a Supersonic Diffuser to Simulate a Rocket’s High Altitude Performance on the Ground, Mechanical Science and Technology, 23 (2009) 254-261.
[17] S. Sankaran, T. N. V. Satyanarayana, K. Annamalai, K. Visvanathan, V. Babu, T. Sundararajan, CFD Analysis for Simulated Altitude Testing of Rocket Motors, Canadian Aeronautics and Space Journal, 48 (2002) 153-162.
[18] R. M. Kumaran, T. Sundararajan, D. R. Manohar, Simulations of High Altitude Tests for Large Area Ratio Rocket Motors, AIAA Journal, 51 (2013) 433-443.
[19] Y.Bartosiewicz, Z. Aidoun, P. Desevaux, Y. Mercadier, Numerical and Experimental Investigations on Supersonic Ejectors, International Journal of Heat and Fluid Flow, 26 (2005) 56–70.
[20] F. Menter, Zonal two equation k–ωturbulence models for aerodynamic flows, AIAA Paper (1993) 2906-2944.
[21] B. H. Park, J. Lim, S. Park, J. H. Lee, W.S. Yoon, Design and Analysis of a Second-throat Exhaust Diffuser for Altitude Simulation, Propulsion and Power, 28 (2012) 1091-1104.
[22] B. H. Park, J. H. Lim, W. Yoon, Fluid Dynamics in Starting and Terminating Transients of Zero-secondary Flow Ejector, International Journal of Heat and Fluid Flow, 29 (2008) 327–339.
[23] N. Fouladi, Numerical Investigation of Flow Transient Phase of Motor Burnout in an Altitude Test Simulator, Modares Mechanical Engineering, 18 (2018) 10-19. (In Persian)
[24] D. Lovely, R. Haimes, Shock Detection from Computational Fluid Dynamics Results, 14th Computational Fluid Dynamics Conference, (1999) p.3285.
[25] Z. Wu, Y. Xu, W. Wang, R. Hu, Review of Shock Wave Detection Method in CFD Post-processing, Chinese Journal of Aeronautics, 26 (2013) 501-513.
[26] F. Chen, C. F. Liu, J. Y. Yang, Supersonic Flow in the Second-throat Ejector-diffuser System, Spacecraft and Rockets, 31 (1994) 123-129.
[27] K. Matsuo, H. D. Kim, Normal Shock Wave Oscillations in Supersonic Diffusers, Shock Waves, 3 (1993) 25-33.
[28] H. G. Sung, H. W. Yeom, S. Yoon, S. J. Kim, J. Kim, Investigation of Rocket Exhaust Diffusers for Altitude Simulation, Propulsion and Power, 26 (2010) 240-247.
[29] J. Chen, Z. G. Wang, J. P. Wu, W. W. Xu, Effect of the Second-throat on the Performance of Supersonic-Supersonic Ejectors, Progress of Projects Supported by NSFC, 55 (2012) 2530–2537.
[30] P. Ducasse, Rocket Altitude Test Facilities Register, report number: AGARD-AG-297, (1987) 1-74.
[31] B. H. Park, J. H. Lee, W. Yoon, Studies on the Starting Transient of a Straight Cylindrical Supersonic Diffuser: Effects of Diffuser Length and Pre-Evacuation State, International Journal of Heat and Fluid Flow, 29 (2008) 1369–1379.
[32] S. Kim, S. Kwon, Starting Pressure and Hysteresis Behavior of an Annular Injection Supersonic Ejector, AIAA Journal, 46 (2008) 1039–1044.