[1] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, Firsov, AA, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438(7065) (2005) 197.
[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(5696) (2004) 666-669.
[3] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354(6348) (1991) 56.
[4] M.M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem., 80(3) (2008) 519-532.
[5] Q. Peng, W. Ji, S. De, Mechanical properties of graphyne monolayers: a first-principles study, PCCP, 14(38) (2012) 13385-13391.
[6] A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10(8) (2011) 569-581.
[7] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 8(3) (2008) 902-907.
[8] J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets, Science, 315(5811) (2007) 490-493.
[9] Y.-W. Son, Y.-W. Son, ML Cohen, and SG Louie, Nature (London) 444, 347 (2006), Nature (London), 444 (2006) 347.
[10] N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, B.J. Van Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 448(7153) (2007) 571.
[11] L. Zhang, S. Zaric, X. Tu, X. Wang, W. Zhao, H. Dai, Assessment of chemically separated carbon nanotubes for nanoelectronics, J. Am. Chem. Soc., 130(8) (2008) 2686-2691.
[12] O.Y. Loh, H.D. Espinosa, Nanoelectromechanical contact switches, Nature nanotechnology, 7(5) (2012) 283.
[13] Y. Rémond, S. Ahzi, M. Baniassadi, H. Garmestani, Applied RVE reconstruction and homogenization of heterogeneous materials, John Wiley & Sons, 2016.
[14] M. Mahdavi, E. Yousefi, M. Baniassadi, M. Karimpour, M. Baghani, Effective thermal and mechanical properties of short carbon fiber/natural rubber composites as a function of mechanical loading, Appl. Therm. Eng., 117 (2017) 8-16.
[15] D. Boukhvalov, M. Katsnelson, Chemical functionalization of graphene with defects, Nano Lett., 8(12) (2008) 4373-4379.
[16] O.C. Compton, S.W. Cranford, K.W. Putz, Z. An, L.C. Brinson, M.J. Buehler, S.T. Nguyen, Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding, ACS nano, 6(3) (2012) 2008-2019.
[17] Q.-X. Pei, Y.-W. Zhang, V.B. Shenoy, Mechanical properties of methyl functionalized graphene: a molecular dynamics study, Nanotechnology, 21(11) (2010) 115709.
[18] F. OuYang, B. Huang, Z. Li, J. Xiao, H. Wang, H. Xu, Chemical functionalization of graphene nanoribbons by carboxyl groups on Stone-Wales defects, J. Phys. Chem. C, 112(31) (2008) 12003-12007.
[19] Z. Zabihi, H. Araghi, Effective thermal conductivity of carbon nanostructure based polyethylene nanocomposite: Influence of defected, doped, and hybrid filler, International Journal of Thermal Sciences, 120 (2017) 185-189.
[20] R.I. Jafri, N. Rajalakshmi, S. Ramaprabhu, Nitrogen-doped multi-walled carbon nanocoils as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Power Sources, 195(24) (2010) 8080-8083.
[21] K. Kim, H.J. Park, B.-C. Woo, K.J. Kim, G.T. Kim, W.S. Yun, Electric property evolution of structurally defected multilayer graphene, Nano Lett., 8(10) (2008) 3092-3096.
[22] G. Wang, X. Li, Y. Wang, Z. Zheng, Z. Dai, X. Qi, L. Liu, Z. Cheng, Z. Xu, P. Tan, Interlayer Coupling Behaviors of Boron Doped Multilayer Graphene, J. Phys. Chem. C, 121(46) (2017) 26034-26043.
[23] X. Zhang, S. Liu, H. Liu, J. Zhang, X. Yang, Molecular dynamics simulation of the mechanical properties of multilayer graphene oxide nanosheets, RSC Advances, 7(87) (2017) 55005-55011.
[24] X. Zhang, X. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, J. Van Landuyt, V. Ivanov, J. Nagy, P. Lambin, A. Lucas, The texture of catalytically grown coil-shaped carbon nanotubules, EPL (Europhysics Letters), 27(2) (1994) 141.
[25] C. Chuang, Y.-C. Fan, B.-Y. Jin, Generalized classification scheme of toroidal and helical carbon nanotubes, J. Chem. Inf. Model., 49(2) (2009) 361-368.
[26] P. Chen, Y. Xu, S. He, X. Sun, S. Pan, J. Deng, D. Chen, H. Peng, Hierarchically arranged helical fibre actuators driven by solvents and vapours, Nature Nanotechnology, 10 (2015) 1077.
[27] J. Wu, J. He, G.M. Odegard, S. Nagao, Q. Zheng, Z. Zhang, Giant stretchability and reversibility of tightly wound helical carbon nanotubes, J. Am. Chem. Soc., 135(37) (2013) 13775-13785.
[28] A. Sharifian, M. Baghani, J. Wu, G.M. Odegard, M. Baniassadi, Insight into Geometry-Controlled Mechanical Properties of Spiral Carbon-Based Nanostructures, J. Phys. Chem. C, 123(5) (2019) 3226-3238.
[29] C. Chuang, Y.-C. Fan, B.-Y. Jin, Dual space approach to the classification of toroidal carbon nanotubes, J. Chem. Inf. Model., 49(7) (2009) 1679-1686.
[30] E. Yousefi, M. Mahdavi, M. Baniassadi, Investigating mechanical properties of coiled carbon nanotube reinforced nanocomposite.
[31] F. Xu, H. Yu, A. Sadrzadeh, B.I. Yakobson, Riemann surfaces of carbon as graphene nanosolenoids, Nano Lett., 16(1) (2015) 34-39.
[32] M. Daigle, D. Miao, A. Lucotti, M. Tommasini, J.F. Morin, Helically coiled graphene nanoribbons, Angew. Chem., 129(22) (2017) 6309-6313.
[33] S. Amelinckx, X. Zhang, D. Bernaerts, X. Zhang, V. Ivanov, J. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Science, 265(5172) (1994) 635-639.
[34] H. Zhan, G. Zhang, C. Yang, Y. Gu, Graphene Helicoid: Distinct Properties Promote Application of Graphene Related Materials in Thermal Management, J. Phys. Chem. C, 122(14) (2018) 7605-7612.
[35] P. Šesták, J. Wu, J. He, J. Pokluda, Z. Zhang, Extraordinary deformation capacity of smallest carbohelicene springs, PCCP, 17(28) (2015) 18684-18690.
[36] H. Zhan, Y. Zhang, C. Yang, G. Zhang, Y. Gu, Graphene helicoid as novel nanospring, Carbon, 120 (2017) 258-264.
[37] H. Zhan, G. Zhang, C. Yang, Y. Gu, Breakdown of Hooke's law at the nanoscale–2D material-based nanosprings, Nanoscale, 10(40) (2018) 18961-18968.
[38] S. Norouzi, M.M.S. Fakhrabadi, Nanomechanical properties of single-and double-layer graphene spirals: a molecular dynamics simulation, Appl. Phys. A, 125(5) (2019) 321.
[39] A. Sharifian, A. Moshfegh, A. Javadzadegan, H.H. Afrouzi, M. Baghani, M. Baniassadi, Hydrogenation-Controlled Mechanical Properties in Graphene Helicoids: Exceptionally Distribution-Dependent Behavior, PCCP, 21(23) (2019) 12423-12433.
[40] S.M. Avdoshenko, P. Koskinen, H. Sevinçli, A.A. Popov, C.G. Rocha, Topological signatures in the electronic structure of graphene spirals, Sci. Rep., 3 (2013) 1632.
[41] S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112(14) (2000) 6472-6486.
[42] O. Shenderova, D. Brenner, A. Omeltchenko, X. Su, L. Yang, Atomistic modeling of the fracture of polycrystalline diamond, Phys. Rev. B, 61(6) (2000) 3877.
[43] J. Wu, S. Nagao, J. He, Z. Zhang, Nanohinge‐Induced Plasticity of Helical Carbon Nanotubes, Small, 9(21) (2013) 3561-3566.
[44] J. Wu, Q. Shi, Z. Zhang, H.-H. Wu, C. Wang, F. Ning, S. Xiao, J. He, Z. Zhang, Nature-inspired Entwined Coiled Carbon Mechanical Metamaterials: Molecular Dynamics Simulations, Nanoscale, 10(33) (2018) 15641-15653.
[45] J. Wu, H. Zhao, J. Liu, Z. Zhang, F. Ning, Y. Liu, Nanotube-chirality-controlled tensile characteristics in coiled carbon metastructures, Carbon, 133 (2018) 335-349.
[46] A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, J. Chem. Phys., 131(15) (2009) 154107.
[47] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics, 14(1) (1996) 33-38.