[1] F. Agrell, H.-E. Ångström, B. Eriksson, J. Wikander, J. Linderyd, Control of HCCI During Engine Transients by Aid of Variable Valve Timings Through the Use of Model Based Non-Linear Compensation, in, SAE International, 2005.
[2] F. Zhao, D.N. Assanis, T.N. Asmus, J.E. Dec, J.A. Eng, P.M. Najt, Homogeneous Charge Compression Ignition (HCCI) Engines, SAE, USA, 2003.
[3] E. Neshat, R.K. Saray, S. Parsa, Numerical analysis of the effects of reformer gas on supercharged n-heptane HCCI combustion, Fuel, 200 (2017) 488-498.
[4] A. Amjad, R.K. Saray, S. Mahmoudi, A. Rahimi, Availability analysis of n-heptane and natural gas blends combustion in HCCI engines, Energy, 36(12) (2011) 6900-6909.
[5] A. Megaritis, D. Yap, M.L. Wyszynski, Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping, Energy, 32(12) (2007) 2396-2400.
[6] P. Das, P. Subbarao, J. Subrahmanyam, Control of combustion process in an HCCI-DI combustion engine using dual injection strategy with EGR, Fuel, 159 (2015) 580-589.
[7] H. Guo, W.S. Neill, The effect of hydrogen addition on combustion and emission characteristics of an n-heptane fuelled HCCI engine, International Journal of Hydrogen Energy, 38 (2013) 11429-11437.
[8] S. Voshtani, M. Reyhanian, M. Ehteram, V. Hosseini, Investigating various effects of reformer gas enrichment on a natural gas-fueled HCCI combustion engine, International Journal of Hydrogen Energy, 39 (2014) 19799-19809.
[9] Y. Iwashiro, T. Tsurushima, Y. Nishijima, Y. Asaumi, Y. Aoyagi, Fuel consumption improvement and operation range expansion in HCCI by direct water injection, 0148-7191, SAE Technical Paper, 2002.
[10] M. Christensen, B. Johansson, Homogeneous Charge Compression Ignition with Water Injection, in, SAE International, 1999.
[11] J.H. Mack, S.M. Aceves, R.W. Dibble, Demonstrating direct use of wet ethanol in a homogeneous charge compression ignition (HCCI) engine, Energy, 34(6) (2009) 782-787.
[12] A. Megaritis, D. Yap, M.L. Wyszynski, Effect of inlet valve timing and water blending on bioethanol HCCI combustion using forced induction and residual gas trapping, Fuel, 87(6) (2008) 732-739.
[13] T. Steinhilber, T. Sattelmayer, The effect of water addition on HCCI diesel combustion, 0148-7191, SAE Technical Paper, 2006.
[14] D.L. Flowers, S.M. Aceves, J.M. Frias, Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines, in, SAE International, 2007.
[15] S. Saxena, S. Schneider, S. Aceves, R. Dibble, Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels, Applied energy, 98 (2012) 448-457.
[16] N. Vinayagam, G. Nagarajan, Experimental study of performance and emission characteristics of DEE-assisted minimally processed ethanol fuelled HCCI engine, International Journal of Automotive Technology, 15(4) (2014) 517-523.
[17] J. Cowart, K. Bowes, M. Walker, L. Hamilton, D.L. Prak, Homogenous Charge Compression Ignition (HCCI) Operation With Jet Fuel and Water Injection in a Single Cylinder Diesel CFR Engine, in: ASME 2017 Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers, 2017, pp. V001T003A016-V001T003A016.
[18] J. Valero-Marco, B. Lehrheuer, J.J. López, S. Pischinger, Potential of water direct injection in a CAI/HCCI gasoline engine to extend the operating range towards higher loads, Fuel, 231 (2018) 317-327.
[19] M. Wick, J. Bedei, D. Gordon, C. Wouters, B. Lehrheuer, E. Nuss, J. Andert, C.R. Koch, In-cycle control for stabilization of homogeneous charge compression ignition combustion using direct water injection, Applied energy, (2019).
[20] M.F. Ahari, E. Neshat, Advanced analysis of various effects of water on natural gas HCCI combustion, emissions and chemical procedure using artificial inert species, Energy, 171 (2019) 842-852.
[21] P. Hellier, N. Ladommatos, R. Allan, J. Rogerson, Combustion and emissions characteristics of toluene/n-heptane and 1-octene/n-octane binary mixtures in a direct injection compression ignition engine, Combustion and Flame, 160(10) (2013) 2141-2158.
[22] V.R. Katta, S.K. Aggarwal, W.M. Roquemore, Evaluation of chemical-kinetics models for n-heptane combustion using a multidimensional CFD code, fuel, 93 (2012) 339-350.
[23] R. Lindstedt, L. Maurice, Detailed kinetic modelling of n-heptane combustion, Combustion Science and Technology, 107(4-6) (1995) 317-353.
[24] Z. Zheng, M. Yao, Numerical study on the chemical reaction kinetics of n-heptane for HCCI combustion process, fuel, 85(17-18) (2006) 2605-2615.
[25] E.J. Silke, H.J. Curran, J.M. Simmie, The influence of fuel structure on combustion as demonstrated by the isomers of heptane: a rapid compression machine study, Proceedings of the Combustion Institute, 30(2) (2005) 2639-2647.
[26] F. Maroteaux, L. Noel, Development of a reduced n-heptane oxidation mechanism for HCCI combustion modeling, Combustion and Flame, 146(1-2) (2006) 246-267.
[27] M.M. Hasan, M.M. Rahman, K. Kadirgama, D. Ramasamy, Numerical study of engine parameters on combustion and performance characteristics in an n-heptane fueled HCCI engine, Applied Thermal Engineering, 128 (2018) 1464-1475.
[28] V. Hosseini, M.D. Checkel, Reformer gas composition effect on HCCI combustion of n-heptane, iso-octane, and natural gas, 0148-7191, SAE Technical Paper, 2008.
[29] V. Hosseini, M.D. Checkel, Effect of reformer gas on HCCI combustion-Part I: High Octane Fuels, 0148-7191, SAE Technical Paper, 2007.
[30] V. Hosseini, Reformer Gas Application in HCCI Combustion Engine, University of Alberta, Edmonton, Alberta, 2008.
[31] E. Neshat, R.K. Saray, Development of a new multi zone model for prediction of HCCI (homogenous charge compression ignition) engine combustion, performance and emission characteristics, Energy, 73 (2014) 325-339.
[32] E. Neshat, R.K. Saray, Effect of different heat transfer models on HCCI engine simulation, Energy Conversion and Management, 88 (2014) 1-14.
[33] J.B. Heywood, Internal combustion engine fundamentals, McGraw Hill Inc, Singapore, 1998.
[35] E. Neshat, M. Nazemian, D. Honnery, Thermodynamic modeling and validation of in‐cylinder flow in diesel engines, Environmental Progress & Sustainable Energy, (2019).
[36] E. Neshat, A.V. Bajestani, D. Honnery, Advanced numerical analyses on thermal, chemical and dilution effects of water addition on diesel engine performance and emissions utilizing artificial inert species, fuel, 242 (2019) 596-606.
[37] E. Neshat, R.K. Saray, V. Hosseini, Effect of reformer gas blending on homogeneous charge compression ignition combustion of primary reference fuels using multi zone model and semi detailed chemical-kinetic mechanism, Applied Energy, 179 (2016) 463–478.
[38] M. Reyhanian, V. Hosseini, Various effects of reformer gas enrichment on natural-gas, iso-octane and normal-heptane HCCI combustion using artificial inert species method, Energy Conversion and Management, 159 (2018) 7-19.
[39] C. Fang, M. Ouyang, F. Yang, Real-time start of combustion detection based on cylinder pressure signals for compression ignition engines, Applied thermal engineering, 114 (2017) 264-270.
[40] D.A. Rothamer, L. Murphy, Systematic study of ignition delay for jet fuels and diesel fuel in a heavy-duty diesel engine, Proceedings of the Combustion Institute, 34(2) (2013) 3021-3029.
[41] A. Hariyanto, K. Bagiasna, I. Asharimurti, A.O. Wijaya, I.K. Reksowardoyo, W. Arismunandar, Application of wavelet analysis to determine the start of combustion of diesel engines, 0148-7191, SAE Technical Paper, 2007.
[42] T. Kamimoto, T. Minagawa, S. Kobori, A two-zone model analysis of heat release rate in diesel engines, 0148-7191, SAE Technical Paper, 1997.
[43] B. Johansson, C. Wilhelmsson, P. Tunestål, R. Johansson, A. Widd, A Physical Two-Zone NOx Model Intended for Embedded Implementation, in: SAE World Congress, 2009, SAE, 2009.
[44] H. Yun, M. Sellnau, N. Milovanovic, S. Zuelch, Development of premixed low-temperature diesel combustion in a HSDI diesel engine, 0148-7191, SAE Technical Paper, 2008.
[45] M.B. Young, Cyclic dispersion–some quantitative cause-and-effect relationships, 0148-7191, SAE Technical Paper, 1980.