[1] G. Zhou, Z. Feng, Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes, International Journal of Thermal Sciences, 78 (2014) 26-35.
[2] G. Lu, G. Zhou, Numerical simulation on performances of plane and curved winglet–Pair vortex generators in a rectangular channel and field synergy analysis, International Journal of Thermal Sciences, 109 (2016) 323-333.
[3] V. Muniyandi, Heat transfer study of perforated fin under forced convection, International Journal of Engineering, 28(10) (2015) 1500-1506.
[4] A.K. Singh, R. Varshney, Experimental investigation on rectangular fins with holes in natural convection, (2017).
[5] M. Salem, M. Althafeeri, K. Elshazly, M. Higazy, M. Abdrabbo, Experimental investigation on the thermal performance of a double pipe heat exchanger with segmental perforated baffles, International Journal of Thermal Sciences, 122 (2017) 39-52.
[6] S. Mohammadi, A. Ahmadi Nadooshan, M. Bayareh, Numerical simulation of laminar convection heat transfer from an array of circular perforated fins, Energy Equipment and Systems, 5(2) (2017) 147-156.
[7] S. Chamoli, R. Lu, P. Yu, Thermal characteristic of a turbulent flow through a circular tube fitted with perforated vortex generator inserts, Applied Thermal Engineering, 121 (2017) 1117-1134.
[8] K. Boukhadia, H. Ameur, D. Sahel, M. Bozit, Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger, International Journal of Thermal Sciences, 126 (2018) 172-180.
[9] A. Gautam, L. Pandey, S. Singh, Influence of perforated triple wing vortex generator on a turbulent flow through a circular tube, Heat and Mass Transfer, 54(7) (2018) 2009-2021.
[10] Z. Han, Z. Xu, J. Wang, Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole, International Journal of Heat and Mass Transfer, 126 (2018) 993-1001.
[11] S. Skullong, P. Promthaisong, P. Promvonge, C. Thianpong, M. Pimsarn, Thermal performance in solar air heater with perforated-winglet-type vortex generator, Solar Energy, 170 (2018) 1101-1117.
[12] M. Khoshvaght-Aliabadi, S. Mortazavi, Combined effects of holes and winglets on chevron plate-fins to enhance the performance of a plate-fin heat exchanger working with nanofluid, Experimental Heat Transfer, 32(6) (2019) 584-599.
[13] F. Nejati Barzoki, G.A. Sheikhzadeh, M. Khoshvaght-Aliabadi, Numerical investigation of effect of vortex generator and perforation on fluid flow and heat transfer through a rectangular channel, in: ISME27, (2019).
[14] S. Gunes, E. Manay, E. Senyigit, V. Ozceyhan, A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts, Applied Thermal Engineering, 31(14-15) (2011) 2568-2577.
[15] K. Yakut, N. Alemdaroglu, B. Sahin, C. Celik, Optimum design-parameters of a heat exchanger having hexagonal fins, Applied energy, 83(2) (2006) 82-98.
[16] V. Yakhot, S. Orszag, S. Thangam, T. Gatski, C. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics, 4(7) (1992) 1510-1520.
[17] C. Min, C. Qi, E. Wang, L. Tian, Y. Qin, Numerical investigation of turbulent flow and heat transfer in a channel with novel longitudinal vortex generators, International Journal of Heat and Mass Transfer, 55(23-24) (2012) 7268-7277.
[18] T. Zhang, Z.Q. Huang, X.B. Zhang, C.J. Liu, Numerical investigation of heat transfer using a novel punched vortex generator, Numerical Heat Transfer, Part A: Applications, 69(10) (2016) 1150-1168.
[19] G.A. Sheikhzadeh, F.N. Barzoki, A.A.A. Arani, F. Pourfattah, Wings shape effect on behavior of hybrid nanofluid inside a channel having vortex generator, Heat and Mass Transfer, 55(7) (2019) 1969-1983.
[20] M. Hatami, D. Ganji, M. Gorji-Bandpy, Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery, Energy Conversion and Management, 97 (2015) 26-41.
[21] J. Zhou, M. Hatami, D. Song, D. Jing, Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods, International Journal of Heat and Mass Transfer, 103 (2016) 715-724.
[22] F. Dittus, L. Boelter, Heat transfer in automobile radiators of the tubular type, International Communications in Heat and Mass Transfer, 12(1) (1985) 3-22.
[23] R. Notter, C. Sleicher, A solution to the turbulent Graetz problem—III Fully developed and entry region heat transfer rates, Chemical Engineering Science, 27(11) (1972) 2073-2093.
[24] B.S. Petukhov, Heat transfer and friction in turbulent pipe flow with variable physical properties, Advances in Heat Transfer 6(1970) 503–564.
[25] M. Khoshvaght-Aliabadi, O. Sartipzadeh, A. Alizadeh, An experimental study on vortex-generator insert with different arrangements of delta-winglets, Energy, 82 (2015) 629-639.
[26] R. Shah, Thermal entry length solutions for the circular tube and parallel plates, in: Proceedings of 3rd national heat and mass transfer conference, Indian Institute of Technology Bombay, 1975, pp. HMT-11-75.
[27] S. Suresh, K. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer, Experimental Thermal and Fluid Science, 38 (2012) 54-60.