تحلیل زمان‌مند فیستول در سه زاویه پیوند 45، 90 و 135 درجه

نوع مقاله : مقاله پژوهشی

نویسندگان

تربیت مدرس

چکیده

انتخاب زاویه‌ی پیوند مناسب برای ایجاد فیستول برای جراحان از اهمیت بالایی برخوردار است؛ بنابراین در این پژوهش سه زاویه‌ی پیوند 45، 90 و 135 درجه به نمایندگی زوایای حاده و منفرجه، طراحی و در یک سیکل کامل قلبی شبیه‌سازی و مورد بررسی قرار گرفتند. از مدل خون غیرنیوتونی کاریو استفاده شده و جریان تراکم‌ناپذیر در نظر گرفته شد و پارامترهای مهم همانند تنش برشی میانگین، شاخص برشی نوسانی، زمان اقامت نسبی و بیشینه‌ی افت فشار استخراج شده و در زوایای مختلف مقایسه شدند. با بررسی نتایج مشاهده شد که تنش برشی میانگین و همچنین ناحیه‌ی درگیر در تنش برشی بالا در زاویه‌ی پیوند 135 درجه نسبت به دو زاویه‌ی دیگر کمتر است و احتمال بروز بیماری ترومبوز و زخم در این زاویه کاهش می‌یابد. از آنجایی که %80 علت ناکارآمدشدن فیستول ناشی از بیماری ترومبوز می‌باشد؛ بنابراین این زاویه به عنوان زاویه‌ی مناسب‌تری برای ایجاد فیستول انتخاب می‌شود. با توجه به نتایج زمان اقامت نسبی که مناطق مستعد رسوب را نشان می‌دهد مشخص شد که در سه زاویه‌ی پیوند، شاخه‌ی سمت راست فیستول و نواحی جدایش جریان مستعد گرفتگی می‌باشند و احتمال رسوب در پیوند 135 درجه و در زیر محل پیوند نسبت به دو زاویه‌ی دیگر کاهش می‌یابد. همچنین این زاویه کمترین افت فشار را بین ورودی اصلی و خروجی فیستول دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Temporal analysis of the fistula at three anastomosis angles of 45, 90, and 135 degrees

نویسندگان [English]

  • seyed mohamad naderi
  • Ghassem Heidarinejad
  • mohamad safarzadeh
tarbiat modares
چکیده [English]

Selection of the appropriate anastomosis angle for the creation of a fistula for surgery is very important. Therefore, in this study, three anastomosis angles of 45, 90, and 135 degrees, representing acute and obtuse angles, are designed and simulated in a complete pulsation cycle. Carreau non-Newtonian blood model is used and the flow is considered as incompressible flow. Finally, after modeling, important parameters such as mean shear stress on the fistula wall, oscillatory shear index, relative residence time, and maximum pressure drop are extracted and compared at different angles. After comparing the results, it is observed that the time average wall shear stress and the range of the high shear stress at anastomosis angle of 135 degree is lower than the two other angles and the probability of thrombosis disease in this angle is reduced. 80% of fistula failure is caused by thrombosis disease, therefore this angle is chosen as the most appropriate angle for fistula creation. Based on the results of the relative residence time, it is found that at all three angles of anastomosis, the right branch of the fistula and flow separation sites have a probability of sedimentation and it decreases at an angle of 135 degree. This angle also has the lowest pressure drop between the main inlet and the fistula outlet.

کلیدواژه‌ها [English]

  • Hemodialysis
  • Fistula anastomosis angle
  • Thrombosis
  • Heart pulsation cycle
  • Atherosclerosis
[1] A.M. Karmody, N. Lempert, “Smooth loop” arteriovenous fistulas for hemodialysis, Surgery, 75(2) (1974) 238-242.
[2] A. Bode, J. Tordoir, Vascular Access for Hemodialysis Therapy, in:  Modelling and Control of Dialysis Systems, Springer, 2013, pp. 235-303.
[3] F. Curtolo, Nuova metodologia basata sull'elaborazione di immagini da Ultrasound® per la modellazione e la simulazione numerica della fistola artero-venosa. A novel protocol based on Ultrasound® imaging for patient specific AVF modelling and numerical simulation,  (2017).
[4] A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, Jama, 282(21) (1999) 2035-2042.
[5] A. Niemann, J. Udesen, S. Thrysoe, J.V. Nygaard, E. Fründ, S.E. Petersen, J. Hasenkam, Can sites prone to flow induced vascular complications in av fistulas be assessed using computational fluid dynamics?, Journal of biomechanics, 43(10) (2010) 2002-2009.
[6] B. Ene-Iordache, A. Remuzzi, Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis, Nephrology Dialysis Transplantation, 27(1) (2011) 358-368.
[7] L.D. Browne, M.T. Walsh, P. Griffin, Experimental and numerical analysis of the bulk flow parameters within an arteriovenous fistula, Cardiovascular engineering and technology, 6(4) (2015) 450-462.
[8] J. de Andrade Silva, J. Karam-Filho, C.C.H. Borges, Computational analysis of anastomotic angles by blood flow conditions in side-to-end radio-cephalic fistulae used in hemodialysis, Journal of Biomedical Science and Engineering, 8(03) (2015) 131.
[9] M. Bozzetto, B. Ene-Iordache, P. Brambilla, A. Remuzzi, Characterization of the flow-field in a patient-specific model of arteriovenous fistula for hemodialysis, International CAE Conference,  (2016).
[10] D. Jodko, D. Obidowski, P. Reorowicz, K. Jóźwik, Numerical investigations of the unsteady blood flow in the end-to-side arteriovenous fistula for hemodialysis, Acta of bioengineering and biomechanics, 18(4) (2016).
[11] M. Bozzetto, P. Brambilla, B. Ene-Iordache, A. Remuzzi, Novel strategies for patient-specific modelling of arteriovenous fistula for hemodialysis.
[12] A. de Villiers, A. McBride, B. Reddy, T. Franz, B. Spottiswoode, A validated patient-specific FSI model for vascular access in haemodialysis, Biomechanics and modeling in mechanobiology, 17(2) (2018) 479-497.
[13] W.B.d.A. Santos, J.F. Rangel, V.B. Fernandes, L.H.P. Lima, T.H.d.C. Costa, K.L.d. Bessa, Analysis of pulsatile flow in arteriovenous fistula through numerical simulation, Universidade Federal do Rio Grande do Norte, 2018.
[14] J. Carroll, R.L. Varcoe, T. Barber, A. Simmons, Reduction in anastomotic flow disturbance within a modified end‐to‐side arteriovenous fistula configuration: Results of a computational flow dynamic model, Nephrology, 24(2) (2019) 245-251.
[15] S. Stella, C. Vergara, L. Giovannacci, A. Quarteroni, G. Prouse, Assessing the disturbed flow and the transition to turbulence in the arteriovenous fistula, Journal of biomechanical engineering, 141(10) (2019).
[16] m. naderi, G. Heidarinejad, m. safarzadeh, Study of Anastomosis obtuse angles to reduce fistula failure with numerical simulation, Amirkabir Journal of Mechanical Engineering,  (2019) -.(in persian)
[17] S.C. Park, R. Song, S. Kim, H.K. Kim, S.-H. Kim, J. Lee, Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology, Journal of Mechanical Science and Technology, 30(12) (2016) 5503-5511.
[18] D.C. Wilcox, Turbulence modeling for CFD, DCW industries La Canada, CA, 1998.
[19] A. Dewan, Tackling turbulent flows in engineering, Springer Science & Business Media, 2010.
[20] A. Razavi, E. Shirani, M. Sadeghi, Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models, Journal of biomechanics, 44(11) (2011) 2021-2030.
[21] N. Hamedi, S. Busch, Non-Newtonian Models in OpenFOAM Implementation of a non-Newtonian model, in, 2014.
[22] Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows, Biorheology, 28(3-4) (1991) 241-262.
[23] D.N. Ku, D.P. Giddens, C.K. Zarins, S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 5(3) (1985) 293-302.
[24] J.-J. Chiu, S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives, Physiological reviews, 91(1) (2011) 327-387.
[25] A. Caballero, S. Laín, A review on computational fluid dynamics modelling in human thoracic aorta, Cardiovascular Engineering and Technology, 4(2) (2013) 103-130.
[26] H.A. Himburg, D.M. Grzybowski, A.L. Hazel, J.A. LaMack, X.-M. Li, M.H. Friedman, Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability, American Journal of Physiology-Heart and Circulatory Physiology, 286(5) (2004) H1916-H1922.
[27] J.V. Soulis, O.P. Lampri, D.K. Fytanidis, G.D. Giannoglou, Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta, in:  Biomedical Engineering, 2011 10th International Workshop on, IEEE, 2011, pp. 1-4.
[28] G. Holzinger, OpenFOAM A little User-Manua,  (2018).
[29] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson Education, 2007.
[30] S. Patankar, Numerical heat transfer and fluid flow, CRC press, 1980.