[1] A.M. Karmody, N. Lempert, “Smooth loop” arteriovenous fistulas for hemodialysis, Surgery, 75(2) (1974) 238-242.
[2] A. Bode, J. Tordoir, Vascular Access for Hemodialysis Therapy, in: Modelling and Control of Dialysis Systems, Springer, 2013, pp. 235-303.
[3] F. Curtolo, Nuova metodologia basata sull'elaborazione di immagini da Ultrasound® per la modellazione e la simulazione numerica della fistola artero-venosa. A novel protocol based on Ultrasound® imaging for patient specific AVF modelling and numerical simulation, (2017).
[4] A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, Jama, 282(21) (1999) 2035-2042.
[5] A. Niemann, J. Udesen, S. Thrysoe, J.V. Nygaard, E. Fründ, S.E. Petersen, J. Hasenkam, Can sites prone to flow induced vascular complications in av fistulas be assessed using computational fluid dynamics?, Journal of biomechanics, 43(10) (2010) 2002-2009.
[6] B. Ene-Iordache, A. Remuzzi, Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis, Nephrology Dialysis Transplantation, 27(1) (2011) 358-368.
[7] L.D. Browne, M.T. Walsh, P. Griffin, Experimental and numerical analysis of the bulk flow parameters within an arteriovenous fistula, Cardiovascular engineering and technology, 6(4) (2015) 450-462.
[8] J. de Andrade Silva, J. Karam-Filho, C.C.H. Borges, Computational analysis of anastomotic angles by blood flow conditions in side-to-end radio-cephalic fistulae used in hemodialysis, Journal of Biomedical Science and Engineering, 8(03) (2015) 131.
[9] M. Bozzetto, B. Ene-Iordache, P. Brambilla, A. Remuzzi, Characterization of the flow-field in a patient-specific model of arteriovenous fistula for hemodialysis, International CAE Conference, (2016).
[10] D. Jodko, D. Obidowski, P. Reorowicz, K. Jóźwik, Numerical investigations of the unsteady blood flow in the end-to-side arteriovenous fistula for hemodialysis, Acta of bioengineering and biomechanics, 18(4) (2016).
[11] M. Bozzetto, P. Brambilla, B. Ene-Iordache, A. Remuzzi, Novel strategies for patient-specific modelling of arteriovenous fistula for hemodialysis.
[12] A. de Villiers, A. McBride, B. Reddy, T. Franz, B. Spottiswoode, A validated patient-specific FSI model for vascular access in haemodialysis, Biomechanics and modeling in mechanobiology, 17(2) (2018) 479-497.
[13] W.B.d.A. Santos, J.F. Rangel, V.B. Fernandes, L.H.P. Lima, T.H.d.C. Costa, K.L.d. Bessa, Analysis of pulsatile flow in arteriovenous fistula through numerical simulation, Universidade Federal do Rio Grande do Norte, 2018.
[14] J. Carroll, R.L. Varcoe, T. Barber, A. Simmons, Reduction in anastomotic flow disturbance within a modified end‐to‐side arteriovenous fistula configuration: Results of a computational flow dynamic model, Nephrology, 24(2) (2019) 245-251.
[15] S. Stella, C. Vergara, L. Giovannacci, A. Quarteroni, G. Prouse, Assessing the disturbed flow and the transition to turbulence in the arteriovenous fistula, Journal of biomechanical engineering, 141(10) (2019).
[16] m. naderi, G. Heidarinejad, m. safarzadeh, Study of Anastomosis obtuse angles to reduce fistula failure with numerical simulation, Amirkabir Journal of Mechanical Engineering, (2019) -.(in persian)
[17] S.C. Park, R. Song, S. Kim, H.K. Kim, S.-H. Kim, J. Lee, Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology, Journal of Mechanical Science and Technology, 30(12) (2016) 5503-5511.
[18] D.C. Wilcox, Turbulence modeling for CFD, DCW industries La Canada, CA, 1998.
[19] A. Dewan, Tackling turbulent flows in engineering, Springer Science & Business Media, 2010.
[20] A. Razavi, E. Shirani, M. Sadeghi, Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models, Journal of biomechanics, 44(11) (2011) 2021-2030.
[21] N. Hamedi, S. Busch, Non-Newtonian Models in OpenFOAM Implementation of a non-Newtonian model, in, 2014.
[22] Y.I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows, Biorheology, 28(3-4) (1991) 241-262.
[23] D.N. Ku, D.P. Giddens, C.K. Zarins, S. Glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis: An Official Journal of the American Heart Association, Inc., 5(3) (1985) 293-302.
[24] J.-J. Chiu, S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives, Physiological reviews, 91(1) (2011) 327-387.
[25] A. Caballero, S. Laín, A review on computational fluid dynamics modelling in human thoracic aorta, Cardiovascular Engineering and Technology, 4(2) (2013) 103-130.
[26] H.A. Himburg, D.M. Grzybowski, A.L. Hazel, J.A. LaMack, X.-M. Li, M.H. Friedman, Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability, American Journal of Physiology-Heart and Circulatory Physiology, 286(5) (2004) H1916-H1922.
[27] J.V. Soulis, O.P. Lampri, D.K. Fytanidis, G.D. Giannoglou, Relative residence time and oscillatory shear index of non-Newtonian flow models in aorta, in: Biomedical Engineering, 2011 10th International Workshop on, IEEE, 2011, pp. 1-4.
[28] G. Holzinger, OpenFOAM A little User-Manua, (2018).
[29] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson Education, 2007.
[30] S. Patankar, Numerical heat transfer and fluid flow, CRC press, 1980.