مدلسازی و تحلیل پارامتری پایداری سیال دوفاز در فرایند جوشش در یک کانال حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشکده مکانیک دانشگاه صنعتی خواجه نصیر

2 دانشگاه صنعتی خواجه نصیر

3 دانشگاه صنعتی خواجه نصیر الدین طوسی

چکیده

در این مقاله ناپایداری جریان سیال دوفاز در فرایند جوشش مورد تحلیل قرار می‌گیرد. با معرفی مشخصه‌های مناسب، یک مدل جامع و نسبتا ساده جهت بیان افت فشار در خلال فرایند پایا به دست آمده‌است. این مدل و اعداد بی‌بعد تعریف شده درک بهتری از تاثیر پارامترهای مختلف بر سیستم و نوسانات ارائه داده‌است. با تحلیل پایداری لیاپانوف، شرایط بروز ناپایداری بر حسب کمیات وابسته فرایند حاصل شده‌اند. تاثیر پارامترها بر شکل منحنی افت فشار بر حسب سرعت جرمی و وجود نقاط اکستریمم مورد بحث قرار گرفته‌اند. شکل نوسانات بر حسب مقدار پارامتر اساسی میرایی نوسان، از یک مدار بیضوی تا یک چهار گوش منطبق بر منحنی افت فشار، تغییر می‌کند و در نتیجه آن شکل موج تغییر خواهد کرد. مشخصات مدار نوسان، دامنه و فرکانس آن‌ها بر حسب کمیات مسئله به صورت تحلیلی مورد بحث قرار گرفت. با حل مدل غیرخطی سیستم، تغییرات دوره تناوب نوسانات حاصل از ناپایداری مورد بررسی و ارتباط آن با پارامترهای تعریف شده سیستم بحث و تحلیل شده‌اند  دوره کارکرد نوسانات برای فشارهای کارکرد بالا تابعی از چگالی مایع و هندسه کانال حرارتی است و برای حجم فشرده بالا، با کاهش نرخ جرمی ورودی در شرایط ناپایدار این مشخصه افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and parametric analysis of two-phase fluid stability in boiling process in a thermal channel

نویسندگان [English]

  • mohammad reza shah nazari 1
  • ashkan Amjadi Golpayegani 2
  • ali saberi 3
1 associate prof./ Mechanical faculty/K.N.Toosi university of technology
2 K.N.Toosi University of technology
3 mechanial faculty, K.N.TOOSI UNIVERSITY OF TECHNOLOGY
چکیده [English]

In this paper, analysis of two-phase flow instability in a boiling process is investigated and a simple and comprehensive model is modified to express pressure drop. The defined model and nondimensional numbers give a comprehensive sight of different parameters' effect on the oscillations. By using Lyapunov stability analysis, conditions in which instability occurs are identified. The effect of parameters on the diagram of pressure drop versus mass flow rate are investigated and the existence of extremum is discussed. The oscillation form varies according to the value of the basic oscillation damping parameter from an elliptical orbit to a quadrilateral, corresponding to the pressure drop curve. The characteristics of their oscillation circuit, amplitude, and frequency were discussed analytically in terms of problem quantities. In addition, by nonlinear analysis, variation of the oscillation period is examined and its relation to the parameter of systems is investigated. In high operating pressure, the oscillation period is a function of fluid density and geometry of the thermal channel. Also for high compressible volumes, this characteristic increases with decreasing input mass flow rate in an unstable condition.

کلیدواژه‌ها [English]

  • two-phase flow
  • Instability
  • Boiling
  • Pressure drop
  • nonlinear dynamic
[1] E. Manavela Chiapero, M. Fernandino, C.A. Dorao, Review on pressure drop oscillations in boiling systems, Nuclear Engineering and Design, 250(0) (2012) 436-447.
[2] L.C. Ruspini, C.P. Marcel, A. Clausse, Two-phase flow instabilities: A review, International Journal of Heat and Mass Transfer, 71(0) (2014) 521-548.
[3] J.A. Boure, A.E. Bergles, L.S. Tong, Review of two-phase flow instability, Nuclear Engineering and Design, 25(2) (1973) 165-192.
[4] A. Koşar, C.-J. Kuo, Y. Peles, Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors, Journal of Heat Transfer, 128(3) (2006) 251-260.
[5] C.-J. Kuo, Y. Peles, Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities, Journal of Heat Transfer, 130(7) (2008) 072402.
[6] P. Bai, T. Tang, B. Tang, Enhanced flow boiling in parallel microchannels with metallic porous coating, Applied Thermal Engineering, 58(1-2) (2013) 291-297.
[7] Q. Jin, J.T. Wen, S. Narayanan, Characteristics of Pressure Drop Oscillation in a Microchannel Cooling System, Applied Thermal Engineering,  (2019) 113849.
[8] J. H. Lienhard, L.C. Witte, An historical review of the hydrodynamic theory of boiling, Reviews in Chemical Engineering, 3(3-4) (1985) 187-280.
[9] S.M. Ghiaasiaan, Two-phase flow, boiling, and condensation: in conventional and miniature systems, Cambridge University Press, 2007.
[10] L. Tadrist, Review on two-phase flow instabilities in narrow spaces, International Journal of Heat and Fluid Flow, 28(1) (2007) 54-62.
[11] A. Stenning, T. Veziroglu, Flow oscillation modes in forced-convection boiling,  (1965).
[12] S. Kakac, B. Bon, A Review of two-phase flow dynamic instabilities in tube boiling systems, International Journal of Heat and Mass Transfer, 51(3–4) (2008) 399-433.
[13] G. Yadigaroglu, Two-phase flow instabilities and propagation phenomena, in: J.M. Delhaye (Ed.) Thermohydraulics of two-phase systems for industrial design and nuclear engineering, McGraw-Hill, 1981.
[14] M. Ozawa, S. Nakanishi, S. Ishigai, Y. Mizuta, H. Tarui, Flow instabilities in boiling channels: part 1 pressure drop oscillation, Bulletin of JSME, 22(170) (1979) 1113-1118.
[15] I.W. Park, M. Fernandino, C.A. Dorao, Experimental study on the characteristics of pressure drop oscillations and their interaction with short-period oscillation in a horizontal tube, International Journal of Refrigeration, 91 (2018) 246-253.
[16] H. Gürgenci, T.N. Veziroglu, S. Kakaç, Simplified nonlinear descriptions of two-phase flow instabilities in vertical boiling channel, International Journal of Heat and Mass Transfer, 26(5) (1983) 671-679.
[17] M.M. Padki, H.T. Liu, S. Kakac, Two-phase flow pressure-drop type and thermal oscillations, International Journal of Heat and Fluid Flow, 12(3) (1991) 240-248.
[18] P.R. Mawasha, R.J. Gross, Periodic oscillations in a horizontal single boiling channel with thermal wall capacity, International Journal of Heat and Fluid Flow, 22(6) (2001) 643-649.
[19] M.M. Padki, K. Palmer, S. Kakaç, T.N. Veziroǧlu, Bifurcation analysis of pressure-drop oscillations and the Ledinegg instability, International Journal of Heat and Mass Transfer, 35(2) (1992) 525-532.
[20] H.T. Liu, H. Koçak, S. Kakaç, Dynamical analysis of pressure-drop type oscillations with a planar model, International Journal of Multiphase Flow, 21(5) (1995) 851-859.
[21] S. Kakaç, M.R. Venkataraman, A. Pramuanjaroenkij, I. Kotcioglu, Modeling of two-phase flow instabilities in convective in-tube boiling horizontal systems, J. of Thermal Science and Technology, 29(1) (2009) 107-116.
[22] L.C. Ruspini, Experimental and numerical investigation on two-phase flow instabilities, Ph.D. Thesis, Norwegian University of Science and Technology, 2013.
[23] M. Emadur Rahman, S. Singh, Non-linear stability analysis of pressure drop oscillations in a heated channel, Chemical Engineering Science, 192 (2018) 176-186.
[24] S. Chen, X. Chen, G. Luo, K. Zhu, L. Chen, Y. Hou, Flow boiling instability of liquid nitrogen in horizontal mini channels, Applied Thermal Engineering, 144 (2018) 812-824.
[25] L. Cao, S. Kakac, H. Liu, P. Sarma, Theoretical analysis of pressure-drop type instabilities in an upflow boiling system with an exit restriction, Heat and mass transfer, 37(4-5) (2001) 475-483.
[26] J.L. Muñoz-Cobo, G. Verdú, Aplication of Hopf bifurcation theory and variational methods to the study of limit cycles in boiling water reactors, Annals of Nuclear Energy, 18(5) (1991) 269-302.
[27] T. Van Oevelen, J.A. Weibel, S.V. Garimella, Predicting two-phase flow distribution and stability in systems with many parallel heated channels, International Journal of Heat and Mass Transfer, 107 (2017) 557-571.
[28] P. Muir, Optimal discrete and continuous mono‐implicit Runge–Kutta schemes for BVODEs, Advances in Computational Mathematics, 10(2) (1999) 135-167.
[29] P. Muir, M. Adams, Mono-implicit Runge–Kutta–Nyström methods for boundary value ordinary differential equations, Tech. Report 03–2000, Dept. Math. and Comp. Sci., Saint Mary’s University , 2000.
[30] Y. Kuang, W. Wang, J. Miao, X.g. Yu, R. Zhuan, Theoretical analysis and modeling of flow instability in a mini-channel evaporator, International Journal of Heat and Mass Transfer, 104 (2017) 149-162.