کنترل مدلغزشی هیپربولیک دوگانه برمبنای فیلتر کالمن خنثی برای بازوی رباتیک سه‌پا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی برق-کنترل، دانشگاه بین المللی امام خمینی، قزوین

چکیده

در این مقاله ابتدا مدلسازی ریاضی و سه بعدی یک بازوی رباتیک سه پا با قابلیت حمل اجسام در سطوح ناهموار ارائه می‌شود، سپس با در نظر گرفتن اغتشاشات محیط و نویز، روش کنترلی مناسبی پیشنهاد می‌شود. کنترل این ساختار به دلیل دینامیک غیرخطی و خاص آن و حضور اغتشاشات و تاثیرات محیطی مساله‌ای بسیار مهم و پیچیده است و کنترلر ربات باید قادر باشد تا در سریعترین زمان ممکن ضمن غلبه بر اغتشاشات و نویز محیط، ربات را در وضعیت مناسب قرار دهد. در این راستا، در مقاله حاضر روش کنترل مدلغزشی هیپربولیک دوگانه بر مبنای فیلتر کالمن خنثی برای سیستم‌های رباتیک سه‌پا شامل بازو توسعه داده شده و پایداری سیستم با بکارگیری تئوری توابع لیاپانوف اثبات می‌شود. در طراحی کنترلر پیشنهادی ضمن در نظر گرفتن اغتشاش در مدل دینامیکی سیستم از فیلتر کالمن خنثی برای کاهش اثر نویز بهره گرفته شده است که خود سبب بهبود عملکرد مقاوم سیستم در شرایط سخت می‌شود. در انتها عملکرد کنترلر ارائه شده در مقایسه با دو کنترلر دینامیک معکوس و کنترل مدلغزشی انتگرالی بر روی سیستم رباتیک انتخابی مورد ارزیابی قرار می‌گیرد که نتایج، نشان‌دهنده سرعت عمل و دقت بیشتر در پاسخ سیستم است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Double Hyperbolic Sliding Mode Control Based on Unscented Kalman Filter for Three-legged Mobile manipulator

نویسندگان [English]

  • Seyyed Alireza Ghoreishi
  • Amir Farhad Ehyaei
  • Mehdi Rahmani
Electrical Engineering Department, Faculty of Technical and Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

In this paper, mathematical and 3D modeling of a three-legged robotic arm capable of moving objects in rough terrain is first presented. Then, considering the noise and environment disturbances, a suitable control method is proposed. Controlling this robot because of its nonlinear dynamics and the presence of disturbances and environmental effects is a very important and complex issue. Therefore, the controller should be able to set the robot in the right position as quickly as possible and eliminate the effect of environmental disturbances and noise on the system response. Accordingly, in this paper, a Double Hyperbolic Sliding Mode Control based on Unscented Kalman Filter is developed for a three-legged mobile manipulator and system stability is proved by Lyapunov theory. In the proposed controller design, while considering the disturbance term in the dynamic model of the system, an Unscented Kalman Filter is used to reduce the noise effect, which improves the robustness of the system under severe conditions. Finally, the performance of the proposed controller is compared with the inverse dynamic controller and the integral sliding mode control on the robotic system. The results show faster operation speed and accuracy in the system response.

کلیدواژه‌ها [English]

  • Mobile Manipulator
  • Three-legged robot
  • Sliding Mode Control
  • Double Hyperbolic Sliding Surface
  • Unscented Kalman Filter
[1] D.W. Hong, R.J. Cipra, Optimal Force Distribution for Tethered Climbing Robots in Unstructured Environments, in, 2002, pp. 1135-1144.
[2] D.W. Hong, R.J. Cipra, Analysis and Visualization of the Contact Force Solution Space for Multi-Limbed Mobile Robots With Three Feet Contact, in, 2003, pp. 1239-1248.
[3] D.W. Hong, R.J. Cipra, Choosing the Optimal Contact Force Distribution for Multi-Limbed Mobile Robots With Three Feet Contact, in, 2003, pp. 1249-1258.
[4] S.-M. Song, K.J. Waldron, Geometric Design of a Walking Machine for Optimal Mobility, Journal of Mechanisms, Transmissions, and Automation in Design, 109(1) (1987) 21-28.
[5]    J.E. Bares, D.S. Wettergreen, Dante II: Technical Description, Results, and Lessons Learned, The International Journal of Robotics Research, 18(7) (1999) 621-649.
[6] D. Wettergreen, H. Thomas, C. Thorpe, Planning strategies for the Ambler walking robot, in: 1990 IEEE International Conference on Systems Engineering, 1990, pp. 198-203.
[7]   S. Hirose, K. Yoneda, H. Tsukagoshi, TITAN VII: quadruped walking and manipulating robot on a steep slope, in: Proceedings of International Conference on Robotics and Automation, 1997, pp. 494-500 vol.491.
[8] J.R. Heaston, D.W. Hong, Design Optimization of a Novel Tripedal Locomotion Robot Through Simulation and Experiments for a Single Step Dynamic Gait, in, 2007, pp. 715-724.
[9] L. Zhang, L. Liu, Z. Wang, Y. Xia, Continuous finite-time control for uncertain robot manipulators with integral sliding mode, IET Control Theory & Applications, 12(11) (2018) 1621-1627.
[10] R.M. Asl, Y.S. Hagh, R. Palm, Robust control by adaptive non-singular terminal sliding mode, Engineering Applications of Artificial Intelligence, 59 (2017) 205-217.
[11] S. Yi, J. Zhai, Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators, ISA transactions, 90 (2019) 41-51.
[12] J.-S. Yang, Control of a five-link biped using an adaptive inverse dynamics method, Control and computers, 25(2) (1997) 56-63.
[13] M. Xiuping, W. Qiong, Dynamic modeling and sliding mode control of a five-link biped during the double support phase, in: Proceedings of the 2004 American Control Conference, 2004, pp. 2609-2614 vol.2603.
[14] H.K. Lum, M. Zribi, Y.C. Soh, Planning and control of a biped robot, International Journal of Engineering Science, 37(10) (1999) 1319-1349.
[15] Z. Li, S.S. Ge, Adaptive robust controls of biped robots, IET Control Theory & Applications, 7(2) (2013) 161-175.
[16] F. Takemori, A. Kitamura, D. Kushida, Constraint of center of gravity in a biped walking robot via sliding mode approach, in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, pp. 1960-1965 vol.1962.
[17] A. Takhmar, M. Alghooneh, S.A. A.Moosavian, Chattering Eliminated and Stable Motion of Biped Robots using a Fuzzy Sliding Mode Controller, Majlesi Journal of Electrical Engineering, 7(1) (2012)
[18] H.B. Oza, Y.V. Orlov, S.K. Spurgeon, Y. Aoustin, C. Chevallereau, Continuous second order sliding mode based robust finite time tracking of a fully actuated biped robot, in: 2014 European Control Conference (ECC), 2014, pp. 2600-2605.
[19] S. Tzafestas, M. Raibert, C. Tzafestas, Robust sliding- mode control applied to a 5-link biped robot, Journal of Intelligent and Robotic Systems, 15(1) (1996) 67-133.
[20] H. Jeong, I. Lee, O. Sim, K. Lee, J.-H. Oh, A robust walking controller optimizing step position and step time that exploit advantages of footed robot, Robotics and Autonomous Systems, 113 (2019) 10-22.
[21] N. Martínez-Fonseca, L.Á. Castañeda, A. Uranga, A. Luviano-Juárez, I. Chairez, Robust disturbance rejection control of a biped robotic system using high-order extended state observer, ISA transactions, 62 (2016) 276- 286.
[22] S. Ito, S. Nishio, M. Ino, R. Morita, K. Matsushita, M. Sasaki, Design and adaptive balance control of a biped robot with fewer actuators for slope walking, Mechatronics, 49 (2018) 56-66.
[23] M.H. Raibert, I.E. Sutherland, Machines That Walk, Scientific American, 248(1) (1983) 44-53.
[24] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, J.P. Richard, Second‐order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum, International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, 18(4‐5) (2008) 529-543.
[25] S. Kurode, P. Trivedi, B. Bandyopadhyay, P. Gandhi, Second order sliding mode control for a class of underactuated systems, in: 2012 12th International Workshop on Variable Structure Systems, IEEE, 2012, pp. 458-462.
[26] H. Ma, J. Wu, Z. Xiong, A novel exponential reaching law of discrete-time sliding-mode control, IEEE Transactions on Industrial Electronics, 64(5) (2017) 3840-3850.
[27] L. Tao, Q. Chen, Y. Nan, C. Wu, Double hyperbolic reaching law with chattering-free and fast convergence, IEEE Access, 6 (2018) 27717-27725.
[28] S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92(3) (2004) 401-422.
[29] Y.S. Hagh, R.M. Asl, V. Cocquempot, A hybrid robust fault tolerant control based on adaptive joint unscented kalman filter, ISA transactions, 66 (2017) 262-274.
[30] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches, John Wiley & Sons, 2006.
[31] F. Auger, M. Hilairet, J.M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, S. Katsura, Industrial applications of the Kalman filter: A review, IEEE Transactions on Industrial Electronics, 60(12) (2013) 5458-5471.
[32] R.  Van  Der  Merwe,  Sigma-point  Kalman  filters  for probabilistic inference in dynamic state-space models, OGI School of Science & Engineering at OHSU, 2004.
[33] J.J. Craig, Introduction to robotics: mechanics and control, 3/E, Pearson Education India, 2009.
[34] F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot manipulator control: theory and practice, CRC Press, 2003.
[35] H. Abedini, S.A. A.Moosavian, Dynamic Modeling of a Quadruped robot, K.N.TOOSI University of technology, 2011.(In persian).
[36] S. Haykin, Kalman filtering and neural networks, John Wiley & Sons, 2004.