[1] D.W. Hong, R.J. Cipra, Optimal Force Distribution for Tethered Climbing Robots in Unstructured Environments, in, 2002, pp. 1135-1144.
[2] D.W. Hong, R.J. Cipra, Analysis and Visualization of the Contact Force Solution Space for Multi-Limbed Mobile Robots With Three Feet Contact, in, 2003, pp. 1239-1248.
[3] D.W. Hong, R.J. Cipra, Choosing the Optimal Contact Force Distribution for Multi-Limbed Mobile Robots With Three Feet Contact, in, 2003, pp. 1249-1258.
[4] S.-M. Song, K.J. Waldron, Geometric Design of a Walking Machine for Optimal Mobility, Journal of Mechanisms, Transmissions, and Automation in Design, 109(1) (1987) 21-28.
[5] J.E. Bares, D.S. Wettergreen, Dante II: Technical Description, Results, and Lessons Learned, The International Journal of Robotics Research, 18(7) (1999) 621-649.
[6] D. Wettergreen, H. Thomas, C. Thorpe, Planning strategies for the Ambler walking robot, in: 1990 IEEE International Conference on Systems Engineering, 1990, pp. 198-203.
[7] S. Hirose, K. Yoneda, H. Tsukagoshi, TITAN VII: quadruped walking and manipulating robot on a steep slope, in: Proceedings of International Conference on Robotics and Automation, 1997, pp. 494-500 vol.491.
[8] J.R. Heaston, D.W. Hong, Design Optimization of a Novel Tripedal Locomotion Robot Through Simulation and Experiments for a Single Step Dynamic Gait, in, 2007, pp. 715-724.
[9] L. Zhang, L. Liu, Z. Wang, Y. Xia, Continuous finite-time control for uncertain robot manipulators with integral sliding mode, IET Control Theory & Applications, 12(11) (2018) 1621-1627.
[10] R.M. Asl, Y.S. Hagh, R. Palm, Robust control by adaptive non-singular terminal sliding mode, Engineering Applications of Artificial Intelligence, 59 (2017) 205-217.
[11] S. Yi, J. Zhai, Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators, ISA transactions, 90 (2019) 41-51.
[12] J.-S. Yang, Control of a five-link biped using an adaptive inverse dynamics method, Control and computers, 25(2) (1997) 56-63.
[13] M. Xiuping, W. Qiong, Dynamic modeling and sliding mode control of a five-link biped during the double support phase, in: Proceedings of the 2004 American Control Conference, 2004, pp. 2609-2614 vol.2603.
[14] H.K. Lum, M. Zribi, Y.C. Soh, Planning and control of a biped robot, International Journal of Engineering Science, 37(10) (1999) 1319-1349.
[15] Z. Li, S.S. Ge, Adaptive robust controls of biped robots, IET Control Theory & Applications, 7(2) (2013) 161-175.
[16] F. Takemori, A. Kitamura, D. Kushida, Constraint of center of gravity in a biped walking robot via sliding mode approach, in: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), 2004, pp. 1960-1965 vol.1962.
[17] A. Takhmar, M. Alghooneh, S.A. A.Moosavian, Chattering Eliminated and Stable Motion of Biped Robots using a Fuzzy Sliding Mode Controller, Majlesi Journal of Electrical Engineering, 7(1) (2012)
[18] H.B. Oza, Y.V. Orlov, S.K. Spurgeon, Y. Aoustin, C. Chevallereau, Continuous second order sliding mode based robust finite time tracking of a fully actuated biped robot, in: 2014 European Control Conference (ECC), 2014, pp. 2600-2605.
[19] S. Tzafestas, M. Raibert, C. Tzafestas, Robust sliding- mode control applied to a 5-link biped robot, Journal of Intelligent and Robotic Systems, 15(1) (1996) 67-133.
[20] H. Jeong, I. Lee, O. Sim, K. Lee, J.-H. Oh, A robust walking controller optimizing step position and step time that exploit advantages of footed robot, Robotics and Autonomous Systems, 113 (2019) 10-22.
[21] N. Martínez-Fonseca, L.Á. Castañeda, A. Uranga, A. Luviano-Juárez, I. Chairez, Robust disturbance rejection control of a biped robotic system using high-order extended state observer, ISA transactions, 62 (2016) 276- 286.
[22] S. Ito, S. Nishio, M. Ino, R. Morita, K. Matsushita, M. Sasaki, Design and adaptive balance control of a biped robot with fewer actuators for slope walking, Mechatronics, 49 (2018) 56-66.
[23] M.H. Raibert, I.E. Sutherland, Machines That Walk, Scientific American, 248(1) (1983) 44-53.
[24] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, J.P. Richard, Second‐order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum, International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, 18(4‐5) (2008) 529-543.
[25] S. Kurode, P. Trivedi, B. Bandyopadhyay, P. Gandhi, Second order sliding mode control for a class of underactuated systems, in: 2012 12th International Workshop on Variable Structure Systems, IEEE, 2012, pp. 458-462.
[26] H. Ma, J. Wu, Z. Xiong, A novel exponential reaching law of discrete-time sliding-mode control, IEEE Transactions on Industrial Electronics, 64(5) (2017) 3840-3850.
[27] L. Tao, Q. Chen, Y. Nan, C. Wu, Double hyperbolic reaching law with chattering-free and fast convergence, IEEE Access, 6 (2018) 27717-27725.
[28] S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation, Proceedings of the IEEE, 92(3) (2004) 401-422.
[29] Y.S. Hagh, R.M. Asl, V. Cocquempot, A hybrid robust fault tolerant control based on adaptive joint unscented kalman filter, ISA transactions, 66 (2017) 262-274.
[30] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches, John Wiley & Sons, 2006.
[31] F. Auger, M. Hilairet, J.M. Guerrero, E. Monmasson, T. Orlowska-Kowalska, S. Katsura, Industrial applications of the Kalman filter: A review, IEEE Transactions on Industrial Electronics, 60(12) (2013) 5458-5471.
[32] R. Van Der Merwe, Sigma-point Kalman filters for probabilistic inference in dynamic state-space models, OGI School of Science & Engineering at OHSU, 2004.
[33] J.J. Craig, Introduction to robotics: mechanics and control, 3/E, Pearson Education India, 2009.
[34] F.L. Lewis, D.M. Dawson, C.T. Abdallah, Robot manipulator control: theory and practice, CRC Press, 2003.
[35] H. Abedini, S.A. A.Moosavian, Dynamic Modeling of a Quadruped robot, K.N.TOOSI University of technology, 2011.(In persian).
[36] S. Haykin, Kalman filtering and neural networks, John Wiley & Sons, 2004.