[1] M.M. Ghafurian, H. Niazmand, New approach for estimating the cooling capacity of the absorption and compression chillers in a trigeneration system, International Journal of Refrigeration, 86 (2018) 89-106.
[2] M. Vafaei, M. BarzgarNezhad, S.E. Shakib, M. Ghafurian, Experimental study and economic evaluation of a cascade solar water desalination unit in various conditions, Amirkabir Journal of Mechanical Engineering, 50(2018) 1-3 (In Persian).
[3] M.M. Ghafurian, H. Niazmand, E. Ebrahimnia-Bajestan, R.A. Taylor, Wood surface treatment techniques for enhanced solar steam generation, Renewable Energy, 146 (2020) 2308-2315.
[4] Z. Saadi, A. Rahmani, S. Lachtar, H. Soualmi, Performance evaluation of a new stepped solar still under the desert climatic conditions, Energy Conversion and Management, 171 (2018) 1749-1760.
[5] K. Rabhi, R. Nciri, F. Nasri, C. Ali, H.B. Bacha, Experimental performance analysis of a modified single-basin single-slope solar still with pin fins absorber and condenser, Desalination, 416 (2017) 86-93.
[6] M. Ghafurian, H. Niazmand, Ebrahimnia bejestan E, Performance evaluation of multi-wall carbon nanotube in solar fresh water production. Articles in Press, Amirkabir Journal of Mechanical Engineering, Accepted Manuscript, Available Online from, 12 (2018) (In Persian).
[7] G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S.V. Boriskina, C.-T. Lin, J. Wang, Y. Xu, M.M. Rahman, T. Zhang, Volumetric solar heating of nanofluids for direct vapor generation, Nano Energy, 17 (2015) 290-301.
[8] H. Jin, G. Lin, L. Bai, A. Zeiny, D. Wen, Steam generation in a nanoparticle-based solar receiver, Nano Energy, 28 (2016) 397-406.
[9] M. Amjad, G. Raza, Y. Xin, S. Pervaiz, J. Xu, X. Du, D. Wen, Volumetric solar heating and steam generation via gold nanofluids, Applied Energy, 206 (2017) 393-400.
[10] H. Jin, G. Lin, L. Bai, M. Amjad, E.P. Bandarra Filho, D. Wen, Photothermal conversion efficiency of nanofluids: An experimental and numerical study, Solar Energy, 139 (2016) 278-289.
[11] M.M. Ghafurian, H. Niazmand, E. Ebrahimnia-Bajestan, H.E. Nik, Localized solar heating via graphene oxide nanofluid for direct steam generation, Journal of Thermal Analysis and Calorimetry, 135 (2019) 1443-1449.
[12] X. Liu, J. Huang, X. Wang, G. Cheng, Y. He, Investigation of graphene nanofluid for high efficient solar steam generation, Energy Procedia, 142 (2017) 350-355.
[13] M.M. Ghafurian, H. Niazmand, E. Ebrahiminia-Bajestan, Improving steam generation and distilled water production by volumetric solar heating, Applied Thermal Engineering, 158(2019) 113808.
[14] X. Liu, X. Wang, J. Huang, G. Cheng, Y. He, Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid, Applied Energy, 220 (2018) 302-312.
[15] M.M. Ghafurian, H. Niazmand, F.T. Dastjerd, O. Mahian, A study on the potential of carbon-based nanomaterials for enhancement of evaporation and water production, Chemical Engineering Science, 207 (2019) 79-90.
[16] H. Li, Y. He, Z. Liu, Y. Huang, B. Jiang, Synchronous steam generation and heat collection in a broadband Ag@ TiO2 core–shell nanoparticle-based receiver, Applied Thermal Engineering, 121 (2017) 617-627.
[17] L. Shi, Y. He, Y. Huang, B. Jiang, Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation, Energy Conversion and Management, 149 (2017) 401-408.
[19] H. Ghasemi, G. Ni, A.M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, G. Chen, Solar steam generation by heat localization, Nature communications, 5 (2014) 4449.
[20] H. Li, Y. He, Z. Liu, B. Jiang, Y. Huang, A flexible thin-film membrane with broadband Ag@ TiO2 nanoparticle for high-efficiency solar evaporation enhancement, Energy, 139 (2017) 210-219.
[21] L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination, Nature Photonics, 10 (2016) 393.
[22] A. Guo, X. Ming, Y. Fu, G. Wang, X. Wang, Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation, ACS applied materials & interfaces, 9 (2017) 29958-29964.
[23] L. Zhang, B. Tang, J. Wu, R. Li, P. Wang, Hydrophobic light‐to‐heat conversion membranes with self‐healing ability for interfacial solar heating, Advanced Materials, 27 (2015) 4889-4894.
[24] G. Xue, K. Liu, Q. Chen, P. Yang, J. Li, T. Ding, J. Duan, B. Qi, J. Zhou, Robust and low-cost flame-treated wood for high-performance solar steam generation, ACS applied materials & interfaces, 9(2017) 15052-15057.
[25] M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, Plasmonic wood for high‐efficiency solar steam generation, Advanced Energy Materials, 8 (2018) 1701028.
[26] F. Chen, A.S. Gong, M. Zhu, G. Chen, S.D. Lacey, F. Jiang, Y. Li, Y. Wang, J. Dai, Y. Yao, Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment, Acs Nano, 11 (2017) 4275-4282.