تحلیل ارتعاشات غیر‌خطی الکتروآیروالاستیکی یک عملگر لایه‌ای نانو‌کامپوزیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری

2 صنعتی امیرکبیر

چکیده

دینامیک غیر‌خطی و رفتارهای ارتعاشی یک صفحه‌ی ذوزنقه‌ای یکسرگیردار، با یک لایه‌ی نانوکامپوزیت و دو لایه پیزوالکتریک، در این مقاله مورد بررسی قرار گرفته است. این صفحه که به عنوان یک عملگر در ریز‌پرنده‌ها مورد استفاده قرار می‌گیرد، در معرض جریان مادون‌صوت بوده که با کمک نظریه جریان پتانسیل خطی مدل گردیده و تحت تحریک‌های الکتریکی و نیروی خارجی قرار دارد. لایه میانی صفحه توسط نانو‌لوله‌های‌کربنی که به صورت یکنواختی در سرتاسر ضخامت صفحه توزیع شده‌اند، تقویت شده است. معادلات غیر‌خطی صفحه با فرض جابجایی‌های بزرگ ون‌کارمن و با کمک اصل همیلتون استخراج شده و طی نگاشتی، هندسه‌ی صفحه ذوزنقه‌ای از حوزه فیزیکی به حوزه محاسباتی مستطیلی انتقال می‌یابد. همچنین با استفاده از روش گلرکین معادلات دیفرانسیل با دو درجه آزادی و جزء‌های غیر‌خطی مرتبه سه استخراج می‌شود. معادلات با بکارگیری روش مقیاس‌های چندگانه و در حالت تشدید همزمان اولیه و داخلی 1:3 حل گردیدند. در ادامه منحنی‌های پاسخ فرکانسی و زمانی بدست آورده شد و اثرات پارامتر‌های مختلف مانند فشار آیرودینامیک، دامنه‌ی بار‌های عرضی و ولتاژ الکتریکی بر ارتعاشات غیر‌خطی صفحه نازک مورد بررسی قرار گرفت. با توجه به نتایج بدست‌آمده در منحنی پاسخ فرکانسی، رفتار نرم‌شوندگی غیرخطی پیچیده‌ای با دو قله در مد بالاتر مشاهده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Electro-aero-elastic Vibration Analysis of a Nanocomposite Laminated Trapezoidal Actuator

نویسندگان [English]

  • Marziye Noroozia 1
  • Firooz Bakhtiari-Nejad 2
1 Mechanical Engineering AUT
2
چکیده [English]

The nonlinear vibration behaviors of a cantilevered piezoelectric carbon nanotube-reinforced composite trapezoidal plate as an actuator in micro air vehicles are considered in this article. The assumption of the uniformly distributed single-walled carbon nanotubes along the thickness is taken into consideration. The plate is exposed to subsonic airflow which is modeled by linear potential flow theory and subjected to combined parametric and external excitations. The large deflection von Karman plate assumptions are applied to derive the governing equations of the motion of the laminated trapezoidal plate by using Hamilton’s principle. Galerkin’s approach combined with proper transformation is formulated and utilized to transform the geometry of the trapezoidal plate into a rectangular computational domain. The nonlinear two-degrees-of-freedom ordinary differential equations with cubic nonlinearities in the case of 1:3 internal resonance and primary resonance are solved by using the multiple scales method. The frequency-response and time-response curves are obtained to analyze the nonlinear dynamic behavior of the plate and study the effects of different parameters such as the amplitudes and frequencies of the excitations and aerodynamic pressure on the nonlinear vibration and dynamic stability of the thin laminated plate. As a result, a complex softening nonlinearity is observed in frequency-response curves.

کلیدواژه‌ها [English]

  • Trapezoidal actuator
  • Combined parametric and external excitations
  • Internal resonance
  • Subsonic airflow
  • Multiple scales method
[1]        H.-S. Shen, Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments, Composite Structures, 91(1) (2009) 9-19.
[2]        A. Shooshtari, M. Rafiee, Vibration characteristics of nanocomposite plates under thermal conditions including nonlinear effects, Int J Appl Res Mech Eng, 1(1) (2011) 60-69.
[3]        Z.-X. Wang, H.-S. Shen, Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets, Composites Part B: Engineering, 43(2) (2012) 411-421.
[4]        M. Rafiee, X. He, K. Liew, Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection, International Journal of Non-Linear Mechanics, 59 (2014) 37-51.
[5]        R. Kolahchi, M. Safari, M. Esmailpour, Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium, Composite Structures, 150 (2016) 255-265.
[6]        X. Guo, W. Zhang, Nonlinear vibrations of a reinforced composite plate with carbon nanotubes, Composite Structures, 135 (2016) 96-108.
[7]        M. Krommer, H. Irschik, A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect, Acta Mechanica, 141(1-2) (2000) 51-69.
[8]        H.-S. Shen, Thermal postbuckling of shear-deformable laminated plates with piezoelectric actuators, Composites science and technology, 61(13) (2001) 1931-1943.
[9]        C. Lim, L. He, A. Soh, Three-dimensional electromechanical responses of a parallel piezoelectric bimorph, International Journal of Solids and Structures, 38(16) (2001) 2833-2849.
[10]     C. Lim, L. He, Exact solution of a compositionally graded piezoelectric layer under uniform stretch, bending and twisting, International Journal of Mechanical Sciences, 43(11) (2001) 2479-2492.
[11]     M. Donadon, S.d. Almeida, A. De Faria, Stiffening effects on the natural frequencies of laminated plates with piezoelectric actuators, Composites Part B: Engineering, 33(5) (2002) 335-342.
[12]     G. Liu, K. Dai, K. Lim, Static and vibration control of composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method, Smart materials and structures, 13(6) (2004) 1438.
[13]     C. Lim, C. Lau, A new two-dimensional model for electro-mechanical response of thick laminated piezoelectric actuator, International journal of solids and structures, 42(20) (2005) 5589-5611.
[14]     F. Heidary, M.R. Eslami, Piezo-control of forced vibrations of a thermoelastic composite plate, Composite structures, 74(1) (2006) 99-105.
[15]     A. Fernandes, J. Pouget, Structural response of composite plates equipped with piezoelectric actuators, Computers & structures, 84(22-23) (2006) 1459-1470.
[16]     Z.K. Kusculuoglu, T.J. Royston, Nonlinear modeling of composite plates with piezoceramic layers using finite element analysis, Journal of Sound and Vibration, 315(4-5) (2008) 911-926.
[17]     W. Zhang, Z. Yao, M. Yao, Periodic and chaotic dynamics of composite laminated piezoelectric rectangular plate with one-to-two internal resonance, Science in China Series E: Technological Sciences, 52(3) (2009) 731-742.
[18]     M. Yao, W. Zhang, Multi-pulse chaotic motions of high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate, Meccanica, 49(2) (2014) 365-392.
[19]     M. Saviz, An optimal approach to active damping of nonlinear vibrations in composite plates using piezoelectric patches, Smart Materials and Structures, 24(11) (2015) 115024.
[20]     Y. Li, E.s. Pan, Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, International Journal of Engineering Science, 97 (2015) 40-59.
[21]     Y. Zhang, W. Zhang, Z. Yao, Analysis on nonlinear vibrations near internal resonances of a composite laminated piezoelectric rectangular plate, Engineering Structures, 173 (2018) 89-106.
[22]     K. Khorshidi, M. Karimi, Flutter analysis of sandwich plates with functionally graded face sheets in thermal environment, Aerospace Science and Technology, 95 (2019) 105461.
[23]     R. Srinivasan, B. Babu, Free vibration of cantilever quadrilateral plates, The Journal of the Acoustical Society of America, 73(3) (1983) 851-855.
[24]     K. Liew, K. Lam, A Rayleigh-Ritz approach to transverse vibration of isotropic and anisotropic trapezoidal plates using orthogonal plate functions, International Journal of Solids and Structures, 27(2) (1991) 189-203.
[25]     K. Liew, Y. Xiang, S. Kitipornchai, Transverse vibration of thick rectangular plates—I. Comprehensive sets of boundary conditions, Computers & structures, 49(1) (1993) 1-29.
[26]     S. Kitipornchai, Y. Xiang, K. Liew, M. Lim, A global approach for vibration of thick trapezoidal plates, Computers & structures, 53(1) (1994) 83-92.
[27]     C. Chen, S. Kitipornchai, C. Lim, K. Liew, Free vibration of cantilevered symmetrically laminated thick trapezoidal plates, International Journal of Mechanical Sciences, 41(6) (1999) 685-702.
[28]     S. Shokrollahi, F. Bakhtiari-Nejad, Limit cycle oscillations of swept-back trapezoidal wings at low subsonic flow, Journal of aircraft, 41(4) (2004) 948-953.
[29]     I. Shufrin, O. Rabinovitch, M. Eisenberger, A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates, International Journal of Mechanical Sciences, 52(12) (2010) 1588-1596.
[30]     M. Zamani, A. Fallah, M. Aghdam, Free vibration analysis of moderately thick trapezoidal symmetrically laminated plates with various combinations of boundary conditions, European Journal of Mechanics-A/Solids, 36 (2012) 204-212.
[31]     P. Malekzadeh, A. Zarei, Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers, Thin-Walled Structures, 82 (2014) 221-232.
[32]     K. Torabi, H. Afshari, F.H. Aboutalebi, Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates, Journal of Sandwich Structures & Materials, 21(8) (2019) 2887-2920.
[33]     W. Tian, Z. Yang, Y. Gu, X. Wang, Analysis of nonlinear aeroelastic characteristics of a trapezoidal wing in hypersonic flow, Nonlinear Dynamics, 89(2) (2017) 1205-1232.
[34]     W. Tian, Z. Yang, T. Zhao, Analysis of Nonlinear Vibrations and Dynamic Responses in a Trapezoidal Cantilever Plate Using the Rayleigh-Ritz Approach Combined with the Affine Transformation, Mathematical Problems in Engineering, 2019(1) (2019) 1–23.
[35]     F. Bakhtiari-Nejad, M. Noroozi, Nonlinear Vibrations of Piezoelectric Carbon Nanotube-Reinforced Composite Trapezoidal Actuator Under Strong Electric Field, in:  ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017, pp. V04BT05A039-V004BT005A039.
[36]     J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, 2003.
[37]     R.L. Bisplinghoff, H. Ashley, R.L. Halfman, Aeroelasticity, Courier Corporation, 2013.
[38]     P. Zhu, Z. Lei, K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures, 94(4) (2012) 1450-1460.