تحلیل پایداری سیال غیرنیوتنی رقیق‌شونده درهندسه تیلور کوئت با فرض شکاف باریک و حرکت خطی استوانه داخلی

نوع مقاله : مقاله پژوهشی

نویسندگان

علوم و تحقیقات تهران*مهندسی مکانیک

چکیده

دراین پژوهش، با ثابت درنظر‌گرفتن استوانه خارجی و حرکت توامان چرخشی و محوری استوانه داخلی در جریان تیلور-‌ کوئت به تحلیل حرکت سیال غیر‌نیوتنی سودوپلاستیک با مدل ویسکوزیته کرو‌- برد جهت تخمین پارامتر‌های جریان مانند سرعت وتوزیع فشار و پیش‌بینی رفتار دینامیکی سیال و پایداری جریان بین دو استوانه پرداخته شده است. ازحل معادلات حاکم شامل معادلات پیوستگی وممنتوم در سیستم استوانه‌ای برای بدست‌آوردن میدان سرعت و فشار استفاده شده است. جریان کل بصورت مجموع جریان پایه و انحرافی تعریف شده است. جریان پایه با حل معادلات حاکم با فرض شکاف باریک و اعمال شرایط‌ مرزی مساله حاصل شده و جریان انحرافی با استفاده ازروش تصویر‌سازی گالرکین بدست می‌آید. با حل دستگاه معادلات دیفرانسیل غیر‌خطی در شرایط ناپایدار و تعیین وضعیت ریشه‌های معادله مشخصه‌ی سیستم، رفتار دینامیکی پایداری جریان در شرایط متفاوتی از مقادیر پارامتر کنترلی عدد تیلور، شاخص غیر‌نیوتنی سیال و رینولدز محوری پیش‌بینی شده و برای درک بهتر تاثیرات عوامل فوق بر بوجودآمدن پدیده آشوب در سیستم از روش نمای لیاپانف نیز جهت تحلیل بهتر بهره ‌گرفته شده است. افزایش عدد رینولدز محوری به افزایش بی‌نظمی در سیال منجر شده و همچنین افزایش شاخص غیر‌نیوتنی سیال نیز به ناپایداری و بی‌نظمی جریان بین دو استوانه منجر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stability analysis of shear-thinning flow in narrow gap Taylor–Couette axial flow

نویسندگان [English]

  • medi yektapour
  • Nariman Ashrafi Khorasani
هییت علمی
چکیده [English]

In this study, by considering the fixed outer cylinder and the rotational and axial velocity of the inner cylinder in the Taylor-Couette flow, the analysis of shear-thinning non-Newtonian fluid Carreu-Bird model motion is used to estimate flow parameters such as velocity and pressure distribution and predict dynamic fluid behavior and stability. The solution of the governing equations including continuity and momentum equations in the cylindrical system is used to obtain the velocity and pressure field. The base flow velocity field is obtained by solving the governing equations by assuming a narrow gap and applying the boundary conditions of the problem and the deviational flow velocity field after simplifying the nonlinear partial differential equation system using the Galerkin projection method with four unknowns. By solving the system of nonlinear differential equations in unstable conditions as well as determining the status of the root of the system’s characteristic equation, the dynamic behavior of the flow and its stability under different conditions of the Taylor number control parameter, non-Newtonian fluid index, and Reynolds axial are predicted.

کلیدواژه‌ها [English]

  • Non-Newtonian fluid
  • Taylor–Couette
  • Carreau-Bird model
  • Galerkin projection method
  • Taylor vortex flow
[1]M. Couette, Etudes sur le frottement des liquides,  (1890).
[2]G.I. Taylor, VIII. Stability of a viscous liquid contained between two rotating cylinders, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 223(605-615) (1923) 289-343.
[3]C. Hoffmann, S. Altmeyer, A. Pinter, M. Lücke, Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals, New Journal of Physics, 11(5) (2009) 053002.
[4]H. Kuhlmann, Model for Taylor-Couette flow, Physical Review A, 32(3) (1985) 1703.
[5]M. Smieszek, C. Egbers, Flow structures and stability in Newtonian and non-Newtonian Taylor-Couette flow, Journal of Physics: Conference Series, 14(1) (2005) 72.
[6]A.Y. Weisberg, I.G. Kevrekidis, A.J. Smits, Delaying transition in Taylor–Couette flow with axial motion of the inner cylinder, Journal of Fluid Mechanics, 348 (1997) 141-151.
[7]R.E. Khayat, Non-linear overstability in the thermal convection of viscoelastic fluids, Journal of non-newtonian fluid mechanics, 58(2-3) (1995) 331-356.
[8]N. Ashrafi, R.E. Khayat, A low-dimensional approach to nonlinear plane-Couette flow of viscoelastic fluids, Physics of Fluids, 12(2) (2000) 345-365.
[9]N. Ashrafi, D. Binding, K. Walters, Cavitation effects in eccentric-cylinder flows of Newtonian and non-Newtonian fluids, Chemical engineering science, 56(19) (2001) 5565-5574.
[10]Z. Li, R.E. Khayat, A nonlinear dynamical system approach to finite amplitude TaylorVortex flowof shear‐thinning fluids, International journal for numerical methods in fluids, 45(3) (2004) 321-340.
[11]K. Khellaf, G. Lauriat, Numerical study of heat transfer in a non-Newtonian Carreau-fluid between rotating concentric vertical cylinders, Journal of non-newtonian fluid mechanics, 89(1-2) (2000) 45-61.
[12]N. Ashrafi, Stability analysis of shear-thinning flow between rotating cylinders, Applied mathematical modelling, 35(9) (2011) 4407-4423.
[13]N. Ashrafi, A. Hazbavi, Flow pattern and stability of pseudoplastic axial Taylor–Couette flow, International Journal of Non-Linear Mechanics, 47(8) (2012) 905-917.
[14]G. Tian, M. Wang, X. Wang, G. Jin, Flow between eccentric cylinders: a shear-extensional controllable flow, Korea-Australia Rheology Journal, 28(2) (2016) 139-148.
[15]H. Masuda, T. Horie, R. Hubacz, M. Ohta, N. Ohmura, Prediction of onset of Taylor-Couette instability for shear-thinning fluids, Rheologica Acta, 56(2) (2017) 73-84.
[16]B. Martínez-Arias, J. Peixinho, Torque in Taylor–Couette flow of viscoelastic polymer solutions, Journal of Non-Newtonian Fluid Mechanics, 247 (2017) 221-228.
[17]C. Schäfer, A. Morozov, C. Wagner, Geometric scaling of elastic instabilities in the Taylor–Couette geometry: A theoretical, experimental and numerical study, Journal of Non-Newtonian Fluid Mechanics, 259 (2018) 78-90.
[18]R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids. Vol. 1: Fluid mechanics,  (1987)
[19]O. Crumeyrolle, I. Mutabazi, M. Grisel, Experimental study of inertioelastic Couette–Taylor instability modes in dilute and semidilute polymer solutions, Physics of Fluids, 14(5) (2002) 1681-1688.