شبیه‌سازی عددی فرایند تشکیل قطره درون میکروکانال تی- شکل دوبعدی با استفاده از روش تنظیم سطح

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

در این تحقیق یک شبیه‌سازی عددی بصورت دوبعدی با استفاده از روش تنظیم سطح دوفازی برای بررسی تاثیر نرخ جریان ورودی فاز پیوسته در فرایند تولید میکروقطره انجام شده است. تحلیل فرایند تشکیل میکروقطرات در یک میکروکانال تی- شکل برای جریان دوفازی مایع/مایع امتزاج‌ناپذیر صورت گرفته است. معادلات حاکم بر میدان جریان توسط روش المان محدود گسسته‌سازی و حل شده‌اند. نتایج عددی بدست‌آمده با داده‌های تجربی موجود در ادبیات فن اعتباردهی شده است، که نشان‌دهنده مطابقت قابل قبولی می‌باشد. نتایج نشان می‌دهد که نرخ جریان ورودی فاز پیوسته تاثیر بسزایی بر روی اندازه قطرات تولید شده دارد. مطالعات انجام‌شده حاکی از آن است که نمودار فشار در نقطه تلاقی دو کانال عمودی و افقی تعداد قطرات تشکیل شده و مراحل سه‌گانه‌ی تشکیل قطره را نشان می‌دهد. همچنین، بررسی‌ها بیان می‌کنند که اختلاف فشار جلو و پشت قطره و نیروی برشی ناشی از ویسکوزیته دو نیروی موثر در تشکیل قطره می‌باشند که در این بین تاثیر نیروی ناشی از اختلاف فشار دو سمت قطره بیشتر است. نهایتا این نتیجه حاصل می‌شود که با افزایش مقدار دبی ورودی فاز پیوسته نیروی لازم جهت غلبه بر کشش سطحی نیز افزایش یافته و قطرات بیشتری با اندازه کوچکتر در مدت زمان کمتری تولید می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of droplet formation in a T-shape microchannel using two-phase level-set method

نویسندگان [English]

  • Mohammad Raad 1
  • Sajadollah Rezazadeh 2
  • Abdolrahman Dadvand 3
1 Master of science student, Faculty of mechanical engineering, Urmia University of Technology, Urmia, Iran
2 Faculty of mechanical engineering, Urmia University of Technology, Urmia, Iran
3 Associated Professor, Faculty of mechanical engineering, Urmia University of Technology, Urmia, Iran
چکیده [English]

In this study, a two-dimensional numerical simulation using the two-phase level set method has been carried out to investigate the influence of continuous phase entrance flow rate on the microdroplets generation process. Analysis of the breakup process of microdroplets in immiscible liquid/liquid two-phase flow in T-junction microchannel was predicted. Governing equations on the flow field have been discretized and solved using the finite element method. Obtained numerical results were validated by comparing the experimental data reported in the literature which show acceptable agreement. Results show that the continuous phase entrance flow rate has a major effect on the size of generated droplets. Studies have shown that the pressure diagram of the junction point can reflect the number of formed droplets and the triple stages of droplet formation. Also, examinations of the pressure and velocity gradient inside the main channel show that the pressure difference of the droplet’s tip and rear and shear force caused by viscosity dominates the droplet formation which the pressure difference between two sides of droplet is more effective. Finally, it could be concluded that by increasing the inlet flow rate of the continuous phase, the needed force for overcoming the surface tension increases and more droplets with small sizes are generated in a short time.

کلیدواژه‌ها [English]

  • Microfluidic technology
  • Two-phase flow
  • Droplet formation
  • Level set method
  • T-shape microchannel
 
[1] V.-L. Wong, K. Loizou, P.-L. Lau, R.S. Graham, B.N. Hewakandamby, Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-SET method, Chemical Engineering Science, 174 (2017) 157-173.
[2] B. Pulvirenti, B. Rostami, G. Puccetti, G. Morini, Determination of droplet contours in liquid-liquid flows within microchannels, in:  Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012028.
[3] G. Christopher, J. Bergstein, N. End, M. Poon, C. Nguyen, S.L. Anna, Coalescence and splitting of confined droplets at microfluidic junctions, Lab on a Chip, 9(8) (2009) 1102-1109.
[4] A. Günther, M. Jhunjhunwala, M. Thalmann, M.A. Schmidt, K.F. Jensen, Micromixing of miscible liquids in segmented gas− liquid flow, Langmuir, 21(4) (2005) 1547-1555.
[5] A.D. Griffiths, D.S. Tawfik, Miniaturising the laboratory in emulsion droplets, Trends in biotechnology, 24(9) (2006) 395-402.
[6] R.N. DeanJr, A. Luque, Applications of microelectromechanical systems in industrial processes and services, IEEE Transactions on Industrial Electronics, 56(4) (2009) 913-925.
[7] D. Haller, P. Woias, N. Kockmann, Simulation and experimental investigation of pressure loss and heat transfer in microchannel networks containing bends and T-junctions, International Journal of Heat and Mass Transfer, 52(11-12) (2009) 2678-2689.
[8] Y. Ba, H. Liu, J. Sun, R. Zheng, Three dimensional simulations of droplet formation in symmetric and asymmetric T-junctions using the color-gradient lattice Boltzmann model, International Journal of Heat and Mass Transfer, 90 (2015) 931-947.
[9] T.B. Jones, M. Gunji, M. Washizu, M. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation, Journal of applied Physics, 89(2) (2001) 1441-1448.
[10] S.H. Tan, B. Semin, J.-C. Baret, Microfluidic flow-focusing in ac electric fields, Lab on a Chip, 14(6) (2014) 1099-1106.
[11] J. Wang, Y. Li, X. Wang, J. Wang, H. Tian, P. Zhao, Y. Tian, Y. Gu, L. Wang, C. Wang, Droplet microfluidics for the production of microparticles and nanoparticles, Micromachines, 8(1) (2017) 22.
[12] I.-L. Ngo, S. Woo Joo, C. Byon, Effects of junction angle and viscosity ratio on droplet formation in microfluidic cross-junction, Journal of Fluids Engineering, 138(5) (2016).
[13] A. Gupta, R. Kumar, Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction, Microfluidics and Nanofluidics, 8(6) (2010) 799-812.
[14] G.F. Christopher, N.N. Noharuddin, J.A. Taylor, S.L. Anna, Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Physical Review E, 78(3) (2008) 036317.
[15] S. Van der Graaf, T. Nisisako, C. Schroën, R. Van Der Sman, R. Boom, Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel, Langmuir, 22(9) (2006) 4144-4152.
[16] T. Kawakatsu, Y. Kikuchi, M. Nakajima, Regular-sized cell creation in microchannel emulsification by visual microprocessing method, Journal of the American Oil Chemists' Society, 74(3) (1997) 317-321.
[17] P. Tirandazi, C.H. Hidrovo, Generation of uniform liquid droplets in a microfluidic chip using a high-speed gaseous microflow, in:  ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers Digital Collection, 2016.
[18] Y. Shi, G. Tang, H. Xia, Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices, Computers & Fluids, 90 (2014) 155-163.
[19] M. Mastiani, B. Mosavati, M.M. Kim, Numerical simulation of high inertial liquid-in-gas droplet in a T-junction microchannel, RSC advances, 7(77) (2017) 48512-48525.
[20] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up, Lab on a Chip, 6(3) (2006) 437-446.
[21] M. De Menech, P. Garstecki, F. Jousse, H.A. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction, journal of fluid mechanics, 595 (2008) 141-161.
[22] J.H. Xu, S. Li, J. Tan, G. Luo, Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping, Microfluidics and Nanofluidics, 5(6) (2008) 711-717.
[23] H. Liu, Y. Zhang, Droplet formation in microfluidic cross-junctions, Physics of Fluids, 23(8) (2011) 082101.
[24] C. Cramer, P. Fischer, E.J. Windhab, Drop formation in a co-flowing ambient fluid, Chemical Engineering Science, 59(15) (2004) 3045-3058.
[25] J. Sivasamy, Y.C. Chim, T.-N. Wong, N.-T. Nguyen, L. Yobas, Reliable addition of reagents into microfluidic droplets, Microfluidics and Nanofluidics, 8(3) (2010) 409-416.
[26] X.-B. Li, F.-C. Li, J.-C. Yang, H. Kinoshita, M. Oishi, M. Oshima, Study on the mechanism of droplet formation in T-junction microchannel, Chemical engineering science, 69(1) (2012) 340-351.
[27] A.A. Yagodnitsyna, A.V. Kovalev, A.V. Bilsky, Flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction, Chemical Engineering Journal, 303 (2016) 547-554.
[28] S.G. Sontti, A. Atta, CFD analysis of microfluidic droplet formation in non–Newtonian liquid, Chemical Engineering Journal, 330 (2017) 245-261.
[29] T. Fu, L. Wei, C. Zhu, Y. Ma, Flow patterns of liquid–liquid two-phase flow in non-Newtonian fluids in rectangular microchannels, Chemical Engineering and Processing: Process Intensification, 91 (2015) 114-120.
[30] M. Darekar, K.K. Singh, S. Mukhopadhyay, K.T. Shenoy, Liquid–liquid two-phase flow patterns in Y-junction microchannels, Industrial & Engineering Chemistry Research, 56(42) (2017) 12215-12226.
[31] Y. Yan, D. Guo, S. Wen, Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction, Chemical engineering science, 84 (2012) 591-601.
[32] F. Cola, A. Romagnoli, J. Hey, Experimental study on the droplet formation around pins of different geometry for the design of a compact falling-droplet absorber, Heat and Mass Transfer, 54(12) (2018) 3599-3616.
[33] Z. Gu, Experimental and Theoretical Study of Droplet Formation at a T-junction with Xanthan Gum Solutions,  (2013).