[1] L.C. Chia, B. Feng, The development of a micropower (micro-thermophotovoltaic) device, Journal of Power Sources, 165(1) (2007) 455-480.
[2] I.A. Waitz, G. Gauba, Y.-S. Tzeng, Combustors for micro-gas turbine engines, (1998).
[3] K. Fu, A.J. Knobloch, F.C. Martinez, D.C. Walther, C. Fernandez-Pello, A.P. Pisano, D. Liepmann, K. Miyaska, K. Maruta, Design and experimental results of small-scale rotary engines, in: Proceedings of the 2001 International Mechanical Engineering Congress and Exposition (IMECE), 2001, pp. 11-16.
[4] S. Zhang, J. Wang, A Novel Micro Free-Piston Swing Engine (MFPSE) and the Validation of Its Feasibility (Part 1), 0148-7191, SAE Technical Paper, 2003.
[5] G.J. Snyder, J.R. Lim, C.-K. Huang, J.-P. Fleurial, Thermoelectric microdevice fabricated by a MEMS-like electrochemical process, Nature materials, 2(8) (2003) 528-531.
[6] H. Xue, W. Yang, S. Chou, C. Shu, Z. Li, Microthermophotovoltaics power system for portable MEMS devices, Microscale thermophysical engineering, 9(1) (2005) 85-97.
[7] A. Bicen, D. Tse, J. Whitelaw, Combustion characteristics of a model can-type combustor, Combustion and flame, 80(2) (1990) 111-125.
[8] M. Maekawa, Flame quenching by rectangular channels as a function of channel length for methane-air mixture, Combustion Science and technology, 11(3-4) (1975) 141-145.
[9] S. Raimondeau, D. Norton, D. Vlachos, R. Masel, Modeling of high-temperature microburners, Proceedings of the Combustion Institute, 29(1) (2002) 901-907.
[10] A. Linan, F.A. Williams, Fundamental aspects of combustion, (1993).
[11] R.I. Masel, M.A. Shannon, Microcombustor having submillimeter critical dimensions, in, Google Patents, 2001.
[12] J. Zarvandi, S. Tabejamaat and M. R. Baig Mohammadi, Numerical Simulation of the Effective Parameters on the Stability of Stoichiometric CH4/Air Premixed Combustion in a Micro-combustion Chamber, Fuel and Combustion, Tarbiat Modares University, Tehran, Iran, 2010.(in Persian)
[13] M. H. Saberi Moghaddam, K. Mazaheri, A. Alipoor, Numerical study of bluff body effect in lean premix hydrogen/air combustion in a micro- scale combustor, Modares Mechanical Engineering, Vol. 14, No. 13, pp. 86-94, 2015 (In Persian)
[14] M.A. Mujeebu, M.Z. Abdullah, M.A. Bakar, A. Mohamad, M. Abdullah, Applications of porous media combustion technology–a review, Applied energy, 86(9) (2009) 1365-1375.
[15] J.E. Sanmiguel, S. Mehta, R.G. Moore, An experimental study of controlled gas-phase combustion in porous media for enhanced recovery of oil and gas, J. Energy Resour. Technol., 125(1) (2003) 64-71.
[16] T. Marbach, A. Agrawal, A meso-scale combustor using annular porous inert media for heat recirculation, in: 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005, pp. 942.
[17] F. Avdic, M. Adzic, F. Durst, Small scale porous medium combustion system for heat production in households, Applied Energy, 87(7) (2010) 2148-2155.
[18] S. Chou, W. Yang, J. Li, Z. Li, Porous media combustion for micro thermophotovoltaic system applications, Applied Energy, 87(9) (2010) 2862-2867.
[19] W. Yang, S. Chou, K. Chua, J. Li, X. Zhao, Research on modular micro combustor-radiator with and without porous media, Chemical engineering journal, 168(2) (2011) 799-802.
[20] K. Chua, W. Yang, W. Ong, Fundamental experiment and numerical analysis of a modular microcombustor with silicon carbide porous medium, Industrial & engineering chemistry research, 51(18) (2012) 6327-6339.
[21] J. Pan, D. Wu, Y. Liu, H. Zhang, A. Tang, H. Xue, Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor, Applied Energy, 160 (2015) 802-807.
[22] S. Bani, J. Pan, A. Tang, Q. Lu, Y. Zhang, Numerical investigation of key parameters of the porous media combustion based Micro-Thermophotovoltaic system, Energy, 157 (2018) 969-978.
[23] Q. Peng, W. Yang, E. Jiaqiang, H. Xu, Z. Li, W. Yu, Y. Tu, Y. Wu, Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications, Energy Conversion and Management, 200 (2019) 112086.
[24] Q. Peng, E. Jiaqiang, W. Yang, H. Xu, J. Chen, F. Zhang, T. Meng, R. Qiu, Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses, Energy, 173 (2019) 540-547.
[25] V. Giovangigli, M. Smooke, Extinction of strained premixed laminar flames with complex chemistry, Combustion science and technology, 53(1) (1987) 23-49.
[26] A. Dybbs, R. Edwards, A new look at porous media fluid mechanics—Darcy to turbulent, in: Fundamentals of transport phenomena in porous media, Springer, 1984, pp. 199-256.
[27] P.-F. Hsu, W.D. EVANS, J.R. HOWELL, Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics, Combustion Science and Technology, 90(1-4) (1993) 149-172.
[28] L. Younis, R. Viskanta, Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam, International journal of heat and mass transfer, 36(6) (1993) 1425-1434.
[29] A. Mohamad, Combustion in porous media: fundamentals and applications, in: Transport phenomena in porous media III, Elsevier, 2005, pp. 287-304.
[30] S. Bani, J. Pan, A. Tang, Q. Lu, Y. Zhang, Micro combustion in a porous media for thermophotovoltaic power generation, Applied Thermal Engineering, 129 (2018) 596-605.
[31] J. Li, Q. Li, J. Shi, X. Liu, Z. Guo, Numerical study on heat recirculation in a porous micro-combustor, Combustion and flame, 171 (2016) 152-161.
[32] A. Horsman, Design Optimization of a Porous Radiant Burner, University of Waterloo, 2010.