[1] E. Toulson, H.C. Watson, W.P. Attard, Modeling alternative prechamber fuels in jet assisted ignition of gasoline and LPG, 0148-7191, SAE Technical Paper, 2009.
[2] W.P. Attard, N. Fraser, P. Parsons, E. Toulson, A turbulent jet ignition pre-chamber combustion system for large fuel economy improvements in a modern vehicle powertrain, SAE International Journal of Engines, 3(2) (2010) 20-37.
[3] A.A. Boretti, Modelling auto ignition of hydrogen in a jet ignition pre-chamber, International Journal of Hydrogen Energy, 35(8) (2010) 3881-3890.
[4] R. Sadanandan, R.A. Schießl, D. Markus, U. Maas, 2D mixture fraction studies in a hot-jet ignition configuration using NO-LIF and correlation analysis, Flow, turbulence and combustion, 86(1) (2011) 45-62.
[5] D. Chiera, M. Riley, G.J. Hampson, Mechanism for High Velocity Turbulent Jet Combustion from Passive Prechamber Spark Plug, in: ASME 2012 Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers Digital Collection, 2012, pp. 11-21.
[6] A. Shah, P. Tunestal, B. Johansson, Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine, 0148-7191, SAE Technical Paper, 2012.
[7] E. Toulson, A. Huisjen, X. Chen, C. Squibb, G. Zhu, H. Schock, W.P. Attard, Visualization of propane and natural gas spark ignition and turbulent jet ignition combustion, SAE International Journal of Engines, 5(4) (2012) 1821-1835.
[8] A. Shah, P. Tunestål, B. Johansson, CFD Simulations of Pre-Chamber Jets' Mixing Characteristics in a Heavy Duty Natural Gas Engine, 0148-7191, SAE Technical Paper, 2015.
[9] G. Gentz, B. Thelen, P. Litke, J. Hoke, E. Toulson, Combustion visualization, performance, and CFD modeling of a pre-chamber turbulent jet ignition system in a rapid compression machine, SAE International Journal of Engines, 8(2) (2015) 538-546.
[10] M.N. Khan, K.-y. Paik, M.R. Nalim, 3D computation for torch jet ignition of premixed methane-hydrogen-air blends in a pre-chamber constant volume combustor at variable pre-chamber pressure, in: 51st AIAA/SAE/ASEE joint propulsion conference, 2015, pp. 3784.
[11] B.C. Thelen, E. Toulson, A computational study on the effect of the orifice size on the performance of a turbulent jet ignition system, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(4) (2017) 536-554.
[12] C.E.C. Alvarez, G.E. Couto, V.R. Roso, A.B. Thiriet, R.M. Valle, A review of prechamber ignition systems as lean combustion technology for SI engines, Applied Thermal Engineering, 128 (2018) 107-120.
[13] F. Qin, A. Shah, Z.-w. Huang, L.-n. Peng, P. Tunestal, X.-S. Bai, Detailed numerical simulation of transient mixing and combustion of premixed methane/air mixtures in a pre-chamber/main-chamber system relevant to internal combustion engines, Combustion and Flame, 188 (2018) 357-366.
[14] H. Sakurai, Newly Developed KAWASAKI GREEN GAS ENGINE-Top performance GE, 26^< th> CIMAC in 2010, (2010).
[15] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, in: Numerical prediction of flow, heat transfer, turbulence and combustion, Elsevier, 1983, pp. 96-116.
[17] Converge Science Inc, (2010).
[18] A.A. Amsden, M. Findley, KIVA-3V: A block-structured KIVA program for engines with vertical or canted valves, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1997.
[19] P. Senecal, E. Pomraning, K. Richards, T. Briggs, C. Choi, R. McDavid, M. Patterson, Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry, SAE transactions, (2003) 1331-1351.
[20] S. Biswas, L. Qiao, Prechamber hot jet ignition of ultra-lean H₂/air mixtures: Effect of supersonic jets and combustion instability, SAE International Journal of Engines, 9(3) (2016) 1584-1592.
[21] K. Tanoue, T. Kimura, T. Jimoto, J. Hashimoto, Y. Moriyoshi, Study of prechamber combustion characteristics in a rapid compression and expansion machine, Applied Thermal Engineering, 115 (2017) 64-71.