تحلیل عددی دینامیک غیرخطی آشوبناک خودرو به همراه طراحی کنترل‌کننده آشوب به روش فازی- لغزشی ترمینال سریع

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه آزاد قزوین، واحد قزوین، دانشکده مهندسی صنایع و مکانیک، قزوین، ایران

چکیده

در این مقاله به کنترل ارتعاشات آشوبناک خودرو هنگام عبور از ناهمواری‌های متناوب سطح جاده با استفاده از روش کنترلفازی- لغزشی ترمینال سریع پرداخته شده است. برای این منظور مدل نصف خودرو شامل رفتار غیرخطی فنر و دمپرهای سیستم تعلیق و تایرها در نظر گرفته شده است. در ابتدا معادلات دینامیکی حاکم بر مسئله با استفاده از قوانین نیوتن- اویلر استخراج شده و با روش عددی رانگ- کوتای مرتبه چهارم حل می‌شوند. به منظور تحلیل دینامیکی آشوب، پس از شبیه‌سازی سیستم مدار باز، رفتار دینامیک غیرخطی سیستم توسط روش‌هایی همچون نمودارهای دوشاخگی، تابع چگالی طیف توان، مسیرهای حرکت صفحه فازی، مقاطع پوانکاره و بیشینه نمای لیاپانوف مورد بررسی قرار می‌گیرد. با مشخص‌شدن محدوده‌های آشوبناک رفتار دینامیکی سیستم و شناسایی مقادیر بحرانی پارامترهای کنترلی مشاهدهمی‌شود کهدرحالتکنترل‌نشدهاینسیستمدارایرفتارآشوبناکاست. سپس به منظورحذفارتعاشاتآشوبناک سیستم، سیگنال‌هایکنترلیبااستفادهازالگوریتم نوین کنترلمود لغزشی ترمینال سریع تولید می‌شوند که گین‌های کنترلی آن با منطق فازی محاسبه می‌گردند. نتایجبه‌دست‌آمده از شبیه‌سازی سیستم کنترلی فازی- لغزشی ترمینال سریع حاکیاز پایدارسازی وحذف رفتار آشوبناک در ارتعاشات پدیدار شده در خودرو است و همچنین رفتار دینامیکی نامنظم سیستم را در محدوده‌های آشوبناک در زمان مناسبی بهبود می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical analysis of chaotic dynamics in vehicle along with design of chaos controller using fuzzy fast terminal sliding mode control

نویسندگان [English]

  • Yavar Nourollahi Golouje
  • Mahdi Abtahi
Faculty of the Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

In this paper, chaos control in the vehicle during passaging of intermittent roughness has been investigated using a fuzzy fast terminal sliding mode control method. For this purpose, the nonlinear half model for the vehicle is considered due to the nonlinear behavior of the springs and dampers used in the suspension system and tires. Initially, the dynamical equations of motion are derived using the Newton-Euler laws and then are solved using the fourth-order Runge-Kutta method. To analyze the chaotic dynamics, the nonlinear dynamic system is studied by specific techniques for identifying the chaotic behaviors such as frequency response diagrams, bifurcation diagrams, frequency spectra, phase plane trajectories, Poincare¢ section and max Lyapunov exponent. Therefore, using these methods, the chaotic zones along with the critical values in order to excite chaos based on the input force of the road surface are depicted on the uncontrolled model. Consequently, to eliminate this chaotic behavior, the control signals in the active suspension system are generated using the novel fuzzy fast terminal sliding mode control algorithm. According to the simulation results of the feedback system, the unwanted vibrations in the suspension system can be stabilized at a proper time via the efficient fuzzy fast terminal sliding mode controller besides the rejection of the irregular chaotic behaviors.

کلیدواژه‌ها [English]

  • Chaotic vibrations
  • bifurcation diagram
  • Terminal sliding mode
  • fuzzy inference

 

[1] G. Litak, M. Borowiec, M.I. Friswell, W. Przystupa, Chaotic response of a quarter car model forced by a road profile with a stochastic component, Chaos, Solitons & Fractals, 39(5) (2009) 2448-2456.
[2] R.D. Naik, P.M. Singru, Resonance, stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback, Communications in Nonlinear Science and Numerical Simulation, 16(8) (2011) 3397-3410.
[3] Q. Zhu, M. Ishitobi, Chaos and bifurcations in a nonlinear vehicle model, Journal of Sound and Vibration, 275(3-5) (2004) 1136-1146.
[4] W. Wang, G. Li, Y. Song, Nonlinear dynamic analysis of the whole vehicle on bumpy road, Transactions of Tianjin University, 16(1) (2010) 50-55.
[5] J. Fakhraee, H. Mohammad Khanlo, M. Ghayour, Analysis of the passengers effect on chaotic vibrations of a nonlinear full vehicle model, Modares Mechanical Engineering, 15(1) (2015) 173-184.
[6] J. Fakhraei, H. Khanlo, M. Ghayour, K. Faramarzi, The influence of road bumps characteristics on the chaotic vibration of a nonlinear full-vehicle model with driver, International Journal of Bifurcation and Chaos, 26(9) (2016) 1650151.
[7] R. Dehghani, H. Khanlo, J. Fakhraei, Active chaos control of a heavy articulated vehicle equipped with magnetorheological dampers, Nonlinear Dynamics, 87(3) (2017) 1923-1942.
[8] A. Bartoszewicz, R.J. Patton, Sliding mode control, International Journal of Adaptive Control and Signal Processing, 21(809) (2007) 635-637.
[9] J.M. Nazzal, A.N. Natsheh, Chaos control using sliding-mode theory, Chaos, Solitons & Fractals, 33(2) (2007) 695-702.
[10] S. Laghrouche, F. Plestan, A. Glumineau, Higher order sliding mode control based on integral sliding mode, Automatica, 43(3) (2007) 531-537.
[11] H. Li, X. Liao, C. Li, C. Li, Chaos control and synchronization via a novel chatter free sliding mode control strategy, Neurocomputing, 74(17) (2011) 3212-3222.
[12] H. Wang, Z.-Z. Han, Q.-Y. Xie, W. Zhang, Finite-time chaos control via nonsingular terminal sliding mode control, Communications in Nonlinear Science and Numerical Simulation, 14(6) (2009) 2728-2733.
[13] S. Dadras, H.R. Momeni, V.J. Majd, Sliding mode control for uncertain new chaotic dynamical system, Chaos, Solitons & Fractals, 41(4) (2009) 1857-1862.
[14] M.R. Faieghi, H. Delavari, D. Baleanu, Control of an uncertain fractional-order Liu system via fuzzy fractional-order sliding mode control, Journal of Vibration and Control, 18(9) (2012) 1366-1374.
[15] Y. Hong, G. Yang, D. Cheng, S. Spurgeon, A new approach to terminal sliding mode control design, Asian Journal of Control, 7(2) (2005) 177-181.
[16] S.M. Abtahi, Suppression of chaotic vibrations in suspension system of vehicle dynamics using chattering-free optimal sliding mode control, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(5) (2019) 210.
[17] S.M. Abtahi, Chaotic study and chaos control in a half-vehicle model with semi-active suspension using discrete optimal Ott–Grebogi–Yorke method, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 231(1) (2017) 148-155.
[18] N.D. Manring, R.C. Fales, Hydraulic control systems, John Wiley & Sons, 2019.