[1] G.M. Homsy, Viscous fingering in porous media, Annual review of fluid mechanics, 19(1) (1987) 271-311.
[2] B. Mandelbrot, The fractal geometry of nature WH Freeman San Francisco USA, (1982).
[3] K. Arakawa, E. Krotkov, Fractal modeling of natural terrain: Analysis and surface reconstruction with range data, Graphical Models and Image Processing, 58(5) (1996) 413-436.
[4] D. Labat, A. Mangin, R. Ababou, Rainfall–runoff relations for karstic springs: multifractal analyses, Journal of Hydrology, 256(3-4) (2002) 176-195.
[5] A. Lagarias, Fractal analysis of the urbanization at the outskirts of the city: models, measurement and explanation, Cybergeo: European Journal of Geography, (2007).
[6] S. Emamikoupaee, S. Zamani, M.R. Shahnazari, A. Heidarzadeh, A. Saberi, Development and Comparison of Methods Based on Grey and Fractal Models for Predicting Natural Gas Prices, Quarterely Energy Economics Review, 15(62) (2019) 1-18.
[7] M.A. Mohammed, B. Al-Khateeb, A.N. Rashid, D.A. Ibrahim, M.K.A. Ghani, S.A. Mostafa, Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images, Computers & Electrical Engineering, 70 (2018) 871-882.
[8] B. Yu, Analysis of flow in fractal porous media, Applied Mechanics Reviews, 61(5) (2008) 050801.
[9] F. Zhu, S. Cui, B. Gu, Fractal analysis for effective thermal conductivity of random fibrous porous materials, Physics letters A, 374(43) (2010) 4411-4414.
[10] A. Gomez, Thermal Performance of a Double-Pipe Heat Exchanger with a Koch Snowflake Fractal Design, (2017).
[11] S. Wang, X. Sun, C. Xu, J. Bao, C. Peng, Z. Tang, Investigation of a circulating turbulent fluidized bed with a fractal gas distributor by electrostatic-immune electrical capacitance tomography, Powder Technology, (2019).
[12] S. Zhang, X. Chen, Z. Wu, Y. Zheng, Numerical study on stagger Koch fractal baffles micromixer, International Journal of Heat and Mass Transfer, 133 (2019) 1065-1073.
[13] B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, science, 156(3775) (1967) 636-638.
[14] T. Higuchi, Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 31(2) (1988) 277-283.
[15] M.A. Ibrahim, Multifractal techniques for analysis and classification of emphysema images, (2017).
[16] S. Hill, Channeling in packed columns, Chemical Engineering Science, 1(6) (1952) 247-253.
[17] D. Peaceman, H. Rachford Jr, Numerical calculation of multidimensional miscible displacement, Society of Petroleum Engineers Journal, 2(04) (1962) 327-339.
[18] M. Christie, D. Bond, Multidimensional flux-corrected transport for reservoir simulation, in: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers, 1985.
[19] T.F. Russell, M.F. Wheeler, C. Chiang, Large-scale simulation of miscible displacement by mixed and characteristic finite element methods, Mathematical and computational methods in seismic exploration and reservoir modeling, (1986) 85-107.
[20] C. Tan, G. Homsy, Simulation of nonlinear viscous fingering in miscible displacement, The Physics of fluids, 31(6) (1988) 1330-1338.
[21] C.T. Tan, G. Homsy, Viscous fingering with permeability heterogeneity, Physics of Fluids A: Fluid Dynamics, 4(6) (1992) 1099-1101.
[22] A. De Wit, G. Homsy, Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations, The Journal of chemical physics, 107(22) (1997) 9619-9628.
[23] S. Pramanik, M. Mishra, Nonlinear simulations of miscible viscous fingering with gradient stresses in porous media, Chemical Engineering Science, 122 (2015) 523-532.
[24] S. Sin, T. Suekane, Y. Nagatsu, A. Patmonoaji, Three-dimensional visualization of viscous fingering for non-Newtonian fluids with chemical reactions that change viscosity, Physical Review Fluids, 4(5) (2019) 054502.
[25] D. Moissis, M. Wheeler, C. Miller, Simulation of miscible viscous fingering using a modified method of characteristics: effects of gravity and heterogeneity, SPE Advanced Technology Series, 1(01) (1993) 62-70.
[26] M. Islam, J. Azaiez, Fully implicit finite difference pseudo‐spectral method for simulating high mobility‐ratio miscible displacements, International Journal for Numerical Methods in Fluids, 47(2) (2005) 161-183.
[27] A.I. Maleka, A. Saberi, M. R. Shahnazari, Simulation and nonlinear instability investigation of two miscible fluid flow in homogeneous porous media, Petroleum Research, 27(95) (2017) 147-162. (in Persian)
[28] M. Shahnazari, I. Maleka Ashtiani, A. Saberi, Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement, Physics of Fluids, 30(3) (2018) 034106.
[29] K. Ghesmat, J. Azaiez, Miscible displacements of reactive and anisotropic dispersive flows in porous media, Transport in porous media, 77(3) (2009) 489.
[30] M.R. Shahnazari, A. Saberi, Fractal Analysis of Viscous Fingering Instability of Two Reactive Miscible Fluids through Homogeneous Porous Media, Journal of Solid and Fluid Mechanics, 9(1) (2019) 265-278. (in Persian)
[31] K. Ghesmat, H. Hassanzadeh, J. Abedi, Z. Chen, Influence of nanoparticles on the dynamics of miscible Hele-Shaw flows, Journal of Applied Physics, 109(10) (2011) 104907.
[32] B. Dastvareh, J. Azaiez, Instabilities of nanofluid flow displacements in porous media, Physics of Fluids, 29(4) (2017) 044101.
[33] K. Zakade, R. Gh, A. Khan, Y.H. Shaikh, Temporal Evolution of Viscous Fingering in Hele Shaw Cell: A Fractal Approach, Int J Sci Res, 6(10) (2015).
[34] S. Tang, Z. Wei, Fractal characteristics of viscous fingering, Fractals, 5(02) (1997) 221-227.
[35] K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, 2004.
[36] B. Dastvareh, Instabilities of Nanofluid Flow Displacements in Porous Media, University of Calgary, 2019.