مطالعه عددی جریان انتقال حرارت جابجایی توأم سیال بینگهام در بین دو استوانه هم‌مرکز

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

در این مقاله، جریان دوبعدی انتقال حرارت جابجایی توأم سیال بینگهام در بین دو استوانه هم‌مرکز بدون استفاده از روش تنظیم‌کننده مورد مطالعه‌ عددی قرارگرفته است. دمای دیوار‌ داخلی، که با سرعت ثابت در حال دوران است، از دمای دیوار‌ ساکن بیرونی بیشتر است. مسئله بر اساس روش حجم محدود و با استفاده از الگوریتم غیرتکراری پیزو حل‌شده است. بدین منظور یکی از حل‌کننده‌های نرم‌افزار اپنفوم برای حل دقیق جریان بینگهام توسعه داده شد. ابتدا حل‌کننده‌ توسعه‌یافته اعتبار سنجی شد. سپس با ثابت در نظر گرفتن پارامترهای نسبت منظری ، عدد رینولدز ، عدد پرانتل و عدد گراشف ، اثر تغییرات عدد بینگهام در محدوده بر رفتارهای هیدرودینامیکی و حرارتی مسئله همچون شکل و اندازه نواحی تسلیم نشده، خطوط جریان، توزیع سرعت، عدد ناسلت موضعی و میانگین، ضریب گشتاور و توزیع تنش مماسی مورد مطالعه قرار گرفت. نتایج نشان می‌دهد که با افزایش عدد بینگهام نواحی تسلیم ‌نشده توسعه می‌یابد و میزان انتقال حرارت و عدد ناسلت کاهش و ضریب گشتاور افزایش می‌یابد. همچنین بازه‌ تغییرات عدد ناسلت موضعی و تنش مماسی بر روی دیوار داخلی با افزایش عدد بینگهام کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of mixed convection of Bingham fluid between two coaxial cylinders

نویسندگان [English]

  • Hamid Raza Askarifard Jahromi
  • Afrasiab Raisi
  • behzad ghasemi
  • Afshin Ahmadi Nodoushan
Mechanical Engineering Department, Shahrekord University, Shahrekord, Iran
چکیده [English]

In this paper, mixed convection of Bingham fluid between two coaxial cylinders has been studied numerically without using any regularization method. The temperature of the inner rotating cylinder is higher than the temperature of the outer stationary cylinder. The finite volume method and non-iterative PISO algorithm have been employed to solve the problem. One of the OpenFOAM solvers, icoFoam, has been modified for solving the exact Bingham model. After validating the modified solver, it has been used to solve the problem for the following ranges of conditions: Reynolds number, Re=10, Prandtl number, Pr=10, Grashof number, Gr=500, Bingham number, 0≤Bn≤1000, and aspect ratio (AR) of 0.1. The effects of the Bingham number on flow and heat transfer characteristics such as the shape and size of the unyielded regions, streamline contours, the local and mean Nusselt number, and the torque coefficient have been investigated. The mean Nusselt number and the torque coefficient decreases and increases, respectively, when the Bingham number increases. The variation range of the local Nusselt number and dimensionless tangential stress on the inner wall decrease with the Bingham number.

کلیدواژه‌ها [English]

  • Numerical study
  • Heat transfer
  • Mixed convection
  • Bingham fluid
  • Two coaxial cylinders
[1] T.C. Papanastasiou, Flows of Materials with Yield, Journal of Rheology, 31 (1987) 385-404.
[2] E.J. O'Donovan, R.I. Tanner, Numerical study of the Bingham squeeze film problem, Journal of Non-Newtonian Fluid Mechanics, 15 (1984) 75-83.
[3] E. Mitsoulis, T. Zisis, Flow of Bingham plastics in a lid-driven square cavity, Journal of Non-Newtonian Fluid Mechanics, 101 (2001) 173-180.
[4] O. Turan, A. Sachdeva, N. Chakraborty, R.J. Poole, Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls, Journal of Non-Newtonian Fluid Mechanics, 166 (2011) 1049-1063.
[5] O. Turan, S. Yigit, N. Chakraborty, Numerical investigation of mixed convection of Bingham fluids in cylindrical enclosures with heated rotating top wall, International Journal of Heat and Mass Transfer, 108 (2017) 1850-1869.
[6] I.A. Frigaard, C. Nouar, On the usage of viscosity regularisation methods for visco-plastic fluid flow computation, Journal of Non-Newtonian Fluid Mechanics, 127 (2005) 1-26.
[7] R.R. Huilgol, G.H.R. Kefayati, Natural convection problem in a Bingham fluid using the operator-splitting method, Journal of Non-Newtonian Fluid Mechanics, 220 (2015) 22-32.
[8] G.H.R. Kefayati, R.R. Huilgol, Lattice Boltzmann Method for simulation of mixed convection of a Bingham fluid in a lid-driven cavity, International Journal of Heat and Mass Transfer, 103 (2016) 725-743.
[9] A. Syrakos, G.C. Georgiou, A.N. Alexandrou, Performance of the finite volume method in solving regularised Bingham flows: Inertia effects in the lid-driven cavity flow, Journal of Non-Newtonian Fluid Mechanics, 208-209 (2014) 88-107.
[10] R. Glowinski, J.L. Lions, R. Tremoliers, Numerical Analysis of Variational Inequalities., NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM . NEW YORK . OXFORD, 8 (1981).
[11] E.J. DEAN, R. GLOWINSKI, OPERATOR-SPLITTING METHODS FOR THE SIMULATION OF BINGHAM VISCO-PLASTIC FLOW, Chinese Annals of Mathematics, 23 (2002) 187-204.
[12] G. Vinay, A. Wachs, J.F. Agassant, Numerical simulation of non-isothermal viscoplastic waxy crude oil flows, Journal of Non-Newtonian Fluid Mechanics, 128 (2005) 144-162.
[13] L. Chupin, T. Dubois, A bi-projection method for Bingham type flows, Computers and Mathematics with Applications, 72 (2016) 1263-1286.
[14] T.H. Kuehn, R.J. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, Journal of Fluid Mechanics, 74 (1976) 695-719.
[15] J.S. Yoo, Mixed convection of air between two horizontal concentric cylinders with a cooled rotating outer cylinder, International Journal of Heat and Mass Transfer, 41 (1998) 293-302.
[16] H. Masoumi, M.S. Aghighi, A. Ammar, A. Nourbakhsh, Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders, International Journal of Heat and Mass Transfer, 138 (2019) 1188-1198.
[17] K. Ragui, A. Boutra, R. Bennacer, Y.K. Benkahla, Progress on numerical simulation of yield stress fluid flows (Part I): Correlating thermosolutal coefficients of Bingham plastics within a porous annulus of a circular shape, International Journal of Heat and Mass Transfer, 126 (2018) 72-94.
[18] R.R. Huilgol, Fluid Mechanics of Viscoplasticity,  (2015).
[19] R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, Journal of Computational Physics, 62 (1986) 40-65.
[20] H.R.A. Jahromi, A. Raisi, B. Ghasemi, A.A. Nadooshan, Numerical study of the Bingham fluid flow in a cylindrical enclosure with exact Bingham model, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4) (2020).
[21] E. Lang, K. Sridhar, N.W. Wilson, Computational Study of Disk Driven Rotating Flow in a Cylindrical Enclosure, Journal of Fluids Engineering, 116 (1994) 815.
[22] R.L. Thompson, E.J. Soares, Viscoplastic dimensionless numbers, Journal of Non-Newtonian Fluid Mechanics, 238 (2016) 57-64.