[1] C.E. Brennen, Cavitation and Bubble Dynamics, Oxford University Press, (1995).
[2] W.A.S. S. Dabiri, D. D. Joseph, Cavitation in an orifice flow, Phys. Fluids, 19(072112) (2007).
[3] A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Physical Review A, 43(8) (1991) 4320-4327.
[4] D. H. Rothman and J. M. Keller, Immiscible Cellular-Automaton Fluids, Journal of Statistical Physics, 52(1119) (1988).
[5] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Physical Review E, 47 (1993) 1815-1819.
[6] X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Physical Review E, 49(4) (1994) 2941-2948.
[7] a.G.D. Xiaowen Shan, Multicomponent Lattice-Boltzmann Model with Interparticle Interaction, Journal of Statistical Physics,, 81 (1995).
[8] P. Yuan, L. Schaefer, Equations of state in a lattice Boltzmann model, Physics of Fluids, 18(4) (2006) 042101.
[9] L.-S. Luo, Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases, PHYSICAL REVIEW E, 62(4) (2000).
[10] W.R. Osborn, E. Orlandini, M.R. Swift, J.M. Yeomans, J.R. Banavar, Lattice Boltzmann Study of Hydrodynamic Spinodal Decomposition, Physical Review Letters, 75 (1995) 4031-4034.
[11] M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys Rev Lett, 75(5) (1995) 830-833.
[12] E.O. Michael R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, PHYSICAL REVIEW E, 54(5041) (1996).
[13] L.-S. Luo, Unified Theory of Lattice Boltzmann Models for Nonideal Gases, Physical Review Letters, 81(8) (1998) 1618-1621.
[14] X.S.a.G.D.D. Xiaoyi He, Discrete Boltzmann equation model for nonideal gases, PHYSICAL REVIEW E, 57(1).
[15] S.C. Xiaoyi He, and Raoyang Zhang, A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability1, Journal of Computational Physics, 152 (1999) 642–663.
[16] R. Zhang, X. He, S. Chen, Interface and surface tension in incompressible lattice Boltzmann multiphase model, Computer Physics Communications, 129(1-3) (2000) 121-130.
[17] R. Zhang, X. He, G. Doolen, S. Chen, Surface tension effects on two-dimensional two-phase Kelvin–Helmholtz instabilities, Advances in Water Resources, 24(3-4) (2001) 461-478.
[18] Z. Guo, B. Shi, C. Zheng, Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows, Philos Trans A Math Phys Eng Sci, 369(1944) (2011) 2283-2291.
[19] X. Shan, Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models, Phys Rev E Stat Nonlin Soft Matter Phys, 73(4 Pt 2) (2006) 047701.
[20] A. Kuzmin, A.A. Mohamad, S. Succi, Multi-Relaxation Time Lattice Boltzmann Model for Multiphase Flows, International Journal of Modern Physics C, 19(06) (2008) 875-902.
[21] D. Lycett-Brown, K.H. Luo, Multiphase cascaded lattice Boltzmann method, Computers & Mathematics with Applications, 67(2) (2014) 350-362.
[22] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi, Generalized lattice Boltzmann method with multirange pseudopotential, Phys Rev E Stat Nonlin Soft Matter Phys, 75(2 Pt 2) (2007) 026702.
[23] G.B. G. Falcucci, G. Chiatti, S. Chibbaro, M. Sbragaglia, and S. Succi, , Lattice Boltzmann Models with Mid-range Interactions, Commun. Comput. Phys, 1071(2) (2007).
[24] Q. Li, K.H. Luo, X.J. Li, Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows, Phys Rev E Stat Nonlin Soft Matter Phys, 86(1 Pt 2) (2012) 016709.
[25] C. Peng, S. Tian, G. Li, M.C. Sukop, Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation, Phys Rev E, 98(2-1) (2018) 023305.
[26] M.C. Sukop, D. Or, Lattice Boltzmann method for homogeneous and heterogeneous cavitation, Phys Rev E Stat Nonlin Soft Matter Phys, 71 (2005) 046703.
[27] E. Ezzatneshan, Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method, Physics of Fluids, 29(11) (2017) 113304.
[28] S.U. G. Falcucci, G. Bella, S. Palpacelli, and A. D. Maio, Lattice Boltzmann simulation of a cavitating diesel injector nozzle, SAE Technical Paper, (2011).
[29] G. Falcucci, E. Jannelli, S. Ubertini, S. Succi, Direct numerical evidence of stress-induced cavitation, Journal of Fluid Mechanics, 728 (2013) 362-375.
[30] G. Falcucci, S. Ubertini, G. Bella, S. Succi, Lattice Boltzmann Simulation of Cavitating Flows, Communications in Computational Physics, 13(03) (2015) 685-695.
[31] G. Kähler, F. Bonelli, G. Gonnella, A. Lamura, Cavitation inception of a van der Waals fluid at a sack-wall obstacle, Physics of Fluids, 27(12) (2015) 123307.
[32] S.K. Mishra, P.A. Deymier, K. Muralidharan, G. Frantziskonis, S. Pannala, S. Simunovic, Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity, Ultrason Sonochem, 17(1) (2010) 258-265.
[33] J. Yang, Z. Shen, X. Zheng, L. Li, Simulation on Cavitation Bubble Collapsing with Lattice Boltzmann Method, Journal of Applied Mathematics and Physics, 03(08) (2015) 947-955.
[34] M.-L. Shan, C.-P. Zhu, C. Yao, C. Yin, X.-Y. Jiang, Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio, Chinese Physics B, 25(10) (2016) 104701.
[35] M.-l. Shan, C.-p. Zhu, X. Zhou, C. Yin, Q.-b. Han, Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method, Journal of Hydrodynamics, 28(3) (2016) 442-450.
[36] Y. Mao, Y. Peng, J. Zhang, Study of Cavitation Bubble Collapse near a Wall by the Modified Lattice Boltzmann Method, Water, 10(10) (2018) 1439.
[37] Y. Peng, B. Wang, Y. Mao, Study on Force Schemes in Pseudopotential Lattice Boltzmann Model for Two-Phase Flows, Mathematical Problems in Engineering, 2018 (2018) 1-9.
[38] C. Peng, S. Tian, G. Li, M.C. Sukop, Simulation of laser-produced single cavitation bubbles with hybrid thermal Lattice Boltzmann method, International Journal of Heat and Mass Transfer, 149 (2020) 119136.
[39] Timm Krüger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, E.M. Viggen, The Lattice Boltzmann Method, 1 ed., Springer International Publishing, Switzerland, 2017.
[40] A.L. Kupershtokh, D.A. Medvedev, Lattice Boltzmann equation method in electrohydrodynamic problems, Journal of Electrostatics, 64(7-9) (2006) 581-585.
[41] Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of Fluids, 9(6) (1997) 1591-1598.
[42] D. Or, M. Tuller, Cavitation during desaturation of porous media under tension, Water Resources Research, 38(5) (2002) 19-11-19-14.
[43] M.S. Plesset, A. Prosperetti, Bubble Dynamics and Cavitation, Annual Review of Fluid Mechanics, 9(1) (1977) 145-185.
[44] L. Rayleigh, VIII. On the pressure developed in a liquid during the collapse of a spherical cavity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34(200) (2009) 94-98.
[45] V. Sofonea, T. Biciuşcă, S. Busuioc, V.E. Ambruş, G. Gonnella, A. Lamura, Corner-transport-upwind lattice Boltzmann model for bubble cavitation, Physical Review E, 97(2) (2018).
[46] J.J. Miau, H.W. Tsai, Y.J. Lin, J.K. Tu, C.H. Fang, M.C. Chen, Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime, Experiments in Fluids, 51(4) (2011) 949-967.
[47] D.D. Joseph, Cavitation in a flowing liquid, Physical Review E, 51(3) (1995) R1649-R1650.