بررسی اثر ترتیب و توالی مسیر جوشکاری بروی تنش‌های پسماند و تغییرشکل‌های ناشی از جوشکاری ناپیوسته محیطی لوله فولادی

نوع مقاله : مقاله پژوهشی

نویسنده

عضو هیئت علمی دانشگاه ملایر

چکیده

در این مقاله، عوامل موثر در فرایند جوشکاری و اثرات آن از جمله تنش‌های پسماند در فرایند جوشکاری محیطی یک لوله با استفاده از نرم‌افزار اجزامحدود آباکوس[1] بررسی شده است. تحلیل در دو مرحله حرارتی و مکانیکی صورت گرفت. ابتدا در تحلیل حرارتی، توزیع دما فرایند جوشکاری بدست آمد و سپس از میدان دمایی بدست آمده به عنوان بارگذاری در تحلیل مکانیکی جهت بدست‌آوردن توزیع تنش‌های پسماند و تغییرشکل‌ها استفاده شد. تاثیر شرایط گوناگون و تغییر پارامترهای مختلف جوشکاری مانند سرعت جوشکاری، حرارت ورودی و ترتیب و توالی مسیر جوشکاری ناپیوسته بر مقادیر تنش پسماند و تغییرشکل‌ها بررسی شد. به‌طوری که با افزایش 50 درصدی سرعت حرکت الکترود، تنش‌های کششی و فشاری محیطی در سطح خارجی لوله دچار بیشترین تغییرات شدند و به ترتیب افزایش 47/43 و 15/15 درصدی را نشان دادند. همچنین افزایش 20 درصدی حرارت ورودی جوش منجر به کاهش 6/2 و 18/18 درصدی تنش‌های کششی و فشاری محیطی در سطح خارجی لوله شد. در نهایت می‌توان گفت یکی از موثرترین راهکارها جهت کاهش اعوجاج های ناشی از جوشکاری ترتیب عملیات جوشکاری است و برای این منظور می‌توان با ناپیوسته‌کردن مسیر جوشکاری با متقارن‌کردن حرارت و کاهش گرادیان دمایی مقدار اعوجاج و تنش‌های پسماند ایجادشده را بیشتر کاهش داد که در این مقاله برای جوش محیطی لوله یک مسیر بهینه نیز ارائه شد.



1-Abaqus

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the effect of welding path on residual stresses and deformations in peripheral welding of steel pipe

نویسنده [English]

  • Mahdi Kazemi
چکیده [English]

In this paper, the effective factors in the welding process and its effects such as residual stresses in the peripheral welding process of a pipe have been investigated using Abaqus software. The analysis was performed in two stages, thermal and mechanical. First, in thermal analysis, the temperature distribution of the welding process was obtained, and then the obtained temperature field was used as a load in mechanical analysis to obtain the distribution of residual stresses and deformations. The effect of different parameters such as welding speed, heat input, and sequence of welding path on residual stress values ​​and deformations were investigated. Results showed that with a 50% increase in electrode speed, tensile and compressive stresses on the outer surface of the pipe showed an increase of 43.47 and 15.15%, respectively. Also, a 20% increase in heat input led to a reduction of 2.6 and 18.18% in tensile and compressive stresses on the outer surface of the pipe. Also in this paper, an optimal path for peripheral welding of pipes is presented.

کلیدواژه‌ها [English]

  • Welding
  • Residual stress
  • Temperature field
  • Thermal
  • and mechanical analysis
[1] J. Subramanian, S. Seetharaman, M. Gupta, Processing and properties of aluminum and magnesium based composites containing amorphous reinforcement: A review, Metals, 5  (2015)  743–762.
[2]  K. Masubuchi, J. Bryan,  T. Muraki, Analysis of thermal stresses and metal movement during welding. Asme Journal, 97  (1975)  81–91.
[3] H. Zhang, M. Wang, X. Zhang, Z. Zhu, T. Yu, G. Yang, Effect of welding speed on defect features and mechanical performance of friction stir lap welded 7B04 aluminum alloy, Metals, 6  (2016)  87–104.
[4] Z. Zeng, X.B. Li, Y.G. Miao, G. Wu, Z.J. Zhao, Numerical and experiment analysis of residual stress on magnesium alloy and steel butt joint by hybrid laser-TIG welding, Comput. Mater. Sci., 50  (2011)  1763–1769.
[5] Y.B. Zhao, Z.L. Lei, Y.B. Chen, W. Tao, A comparative study of laser-arc double-sided welding and double-sided arc welding of 6 mm 5A06 aluminium alloy, Mater. Des., 32 (2011)  2165–2171.
[6] P. Carlone, R. Citarella, M. Lepore, G.S. Palazzo, A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints, Int. J. Mater. Form, 8 (2015)  591–599.
[7] W. Jiang, Q. Fan, J. Gong, Optimization of welding joint between tower and bottom flange based on residual stress considerations in a wind turbine, Energy 35 (2010)  461–467.
[8] H.C. Kuo, L.J. Wu, Prediction of deformation to thin ship panels for different heat sources, J. Ship Prod, 17 (2001) 52–61.
[9] R. Koganti, A. Joaquin, M. Zaluzec, C. Karas, Gas Metal Arc Welded (GMAW) Joint Strength Comparison of Aluminum Sheet (5754) and Exturded (6063) Alloys, ASME 2007 International Mechanical Engineering Congress and Exposition, 6 (2007) 715-723.
[10] W. Jiang, K. Yahiaoui, Effect of welding sequence on residual stressdistribution in a multipass welded piping branch junction,international joiurnal of pressure vessel and piping, 95 (2012) 39-47.
[11] J.A. Da Nóbrega, D.S. Diniz, A.A. Silva, T.M. Maciel, V. Albuquerque, J. Tavares, Numerical evaluation of temperature field and residual stresses in an API 5L X80 steel welded joint using the finite element method, Metals, 6 (2016) 28-39.
[12] Z. Zeng, L.J. Wang, P.A. Du, X.B. Li, Determination of welding stress and distortion in discontinuous welding by means of numerical simulation and comparison with experimental measurements, Comput. Mater. Sci, 49 (2010) 535–543.
[13] B. Brickstad, B.L. Josefson, A Parametric Study of Residual Stresses in Multi-pass Butt- Welded Stainless Steel Pipes, International Journal of Pressure Vessels and Piping, 75 (1998) 11-25.
[14] L. Yajiang, W. Juan, C. Maoai, S. Xiaoqin, Finite Element Analysis of Residual Stress in the Welded Zone of a High Strength Steel, Bulletin of Materials Science, 27(2) (2004) 127- 132.
[15] A. Kermanpur, M. Shamanian, V. Esfahani Yeganeh, Three-Dimensional Thermal Simulation and Experimental Investigation of GTAW Circumferentially Butt-Welded Incoloy 800 Pipes”. Journal of Materials Processing Technology, 99 (2008) 295-303.
[16] T.J. Kim, B.S. Jang, S.W. Kang, Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage, Int. J. Naval Archit. Ocean Eng, 7 (2015) 805-816.
[17] A.A. Bhatti, Z. Barsoum, H. Murakawa, I. Barsoum, Influence of thermo-mechanical material properties of different steel grades on welding residual stresses and angular distortion, Int. J. Materials & Design, 65 (2015) 878-889.
[18] S. Mirzaahmadi, D. Afshari, Z. Barsoum, Investigating the effect of material properties on simulation of Mg alloy resistance spot welding process, Int. J. Manufacturing Engineering, 6 (2019) 53-60.
[19] N. Habibi, H. Eskandari, Stress and temperature analysis in tubular x-joints using simufact welding, Int. J. Welding Science and Technology, 5 (2020) 61-75.
[20] N. Habibi, S. Samawati, O. Ahmadi, Transient Thermal Stresses Analysis in a FPGM Cylinder, Journal of Mechanics of Advanced Composite Structures, 6 (2019) 81-94.
[21] D. Deng, H. Murakawa, Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements, Computational Materials Science, 37 (2006), 269-277.