تحلیل عددی جریان و انتقال حرارت جابجایی طبیعی در محفظه‌ی قطاعی گرم‌شده از کف با استفاده از لایه‌ی متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 صنعتی ارومیه-مهندسی مکانیک

2 دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

چکیده

در مقاله‌ی حاضر، جریان آرام و انتقال حرارت نانوسیال 4‌O‌3‌Fe‌‌/‌آب در یک محفظه‌ی دایروی به صورت عددی و با روش دو‌فازی بونجیورنو انجام شده است. یک لایه‌ی متخلخل به دیواره‌ی داغ محفظه جاگذاری شده و اعمال میدان مغناطیسی یکنواخت خارجی موجب ایجاد اثرات مگنتوهیدرودینامیکی در محفظه شده است. تمامی معادلات به صورت بی‌‌بعد حل شده و توزیع غلظت نانوذرات ارائه شده است. پارامتر‌های کنترلی در این مطالعه شامل عدد دارسی  10-1Da≤10-6، زاویه‌ی اعمال میدان مغناطیسی 090، عدد هارتمن 200≥Ha≥0، ضریب انتقال حرارت هدایتی موثر لایه‌ی متخلخل
10100، عدد رایلی 105×5≤Ra≤0، پارامتر‌های هندسی نظیر ضخامت لایه‌ی متخلخل 09/010/0 و زاویه‌ی مرکزی محفظه 90≥θ≤0 می‌باشد. نتایج بدست‌آمده از بررسی‌های انجام‌شده به صورت نمودار، کانتور و همچنین خطوط جریان، وابستگی عدد ناسلت به پارامتر‌های کنترلی را نشان می‌دهد. بر اساس نتایج بدست‌آمده، با تغییر عدد دارسی، عدد ناسلت میانگین تغییر یافته و مقدار مشخصی از عدد دارسی وجود دارد که کمتر از آن مقدار، جاگذاری لایه‌ی متخلخل موجب کاهش انتقال حرارت می‌گردد. با این وجود، با افزایش عدد هارتمن که موجب اعمال نیروی لورنتس می‌شود، عدد ناسلت کاهش خواهد یافت زیرا مومنتوم جریان سیال و بنابراین انتقال حرارت جابجایی در داخل محفظه کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical analysis of flow and natural convection heat transfer in a circular enclosure heated from bottom utilizing porous layer

نویسندگان [English]

  • Farrokh Mobadersani 1
  • Fardad Tavakkol 2
1 صنعتی ارومیه-مهندسی مکانیک
2 Department of Mechanical Engineeing, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In the present paper, laminar flow and heat transfer of /water nanofluid in a circular enclosure have been numerically carried out using the Buongiorno’s model. A porous layer is attached to the hot wall of the enclosure and an applied uniform external magnetic field generates magnetohydrodynamic effect in the cavity. The simulations are performed utilizing a two-phase model and nano particle concentration distribution is presented. All of the equations are solved in dimensionless form. The control parameters in this study are Darcy number , angle of the applied magnetic field , Hartmann number , effective conductive heat transfer coefficient of the porous layer , Rayleigh number , geometrical parameters like porous layer thickness  , and central angle of the cavity . The gained results which are derived in form of plots, contours, and also streamlines show the dependency of Nusselt number to control parameters. According to the results, any changes in Darcy number cause Nusselt number variations, and also there is a specified Darcy number that heat transfer reduces by an increase of Darcy number. Moreover, by an increment of Hartmann number, leading to higher Lorentz force, the average Nusselt number will reduce because the momentum of fluid flow and consequently convective heat transfer decrease inside the enclosure.

کلیدواژه‌ها [English]

  • circular enclosure
  • Nanofluid
  • Porous Layer
  • Magnetohydrodynamic
  • Buongiorno two-phase model
[1] M. Sheikholeslami, & Rashidi, M. M. , Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid, Journal of the Taiwan Institute of Chemical Engineers, 56 (2015) 6-15.
[2] M.M. Rashidi, Momoniat, E., Ferdows, M., & Basiriparsa, A. , Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media, Mathematical Problems in Engineering, ,  (2014).
[3] F. Garoosi, Jahanshaloo, L., Rashidi, M. M., Badakhsh, A., & Ali, M. E. , Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model, Applied Mathematics and Computation, 254 (2015) 183-203.
[4] R. Loni, Asli-Areh, E. A., Ghobadian, B., Kasaeian, A. B., Gorjian, S., Najafi, G., & Bellos, E. ). Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: Experimental tests, Renewable Energy, 145 (2020) 783-804.
[5] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, International Journal for numerical methods in fluids, 3 (1983) 249-264.
[6] S.O. Giwa, Sharifpur, M., & Meyer, J. P. , Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3-MWCNT/water in a differentially heated square cavity, International Journal of Heat and Mass Transfer, 148 (2020) 119072.
[7] A. Baïri, Zarco-Pernia, E., & De María, J. M. G. , A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity, Applied Thermal Engineering, 63(1) (2014) 304-322.
[8] W. Wu, & Ching, C. Y. , Laminar natural convection in an air-filled square cavity with partitions on the top wall, Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences,  (2009, January) 399-414.
[9] X. Shi, & Khodadadi, J. M. , Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall, Journal of Heat Transfer, 125(4) (2003) 624-634.
[10] S. Sivasankaran, & Kandaswamy, P. K. , Double diffusive convection of water in a rectangular partitioned enclosure with temperature dependent species diffusivity, International Journal of Fluid Mechanics Research, 33(4) (2006).
[11] H.K. Park, Ha, M. Y., Yoon, H. S., Park, Y. G., & Son, C. , A numerical study on natural convection in an inclined square enclosure with a circular cylinder, International Journal of Heat and Mass Transfer, 66 (2013) 295-314.
[12] Y.G. Park, Ha, M. Y., & Park, J. , Natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations, International Journal of Heat and Mass Transfer, 81 (2015) 490-511.
[13] Y.G. Park, Ha, M. Y., Choi, C., & Park, J. , Natural convection in a square enclosure with two inner circular cylinders positioned at different vertical locations, International Journal of Heat and Mass Transfer, 77 (2014) 501-518.
[14] Q.X. Wang, Lei, H. Y., Wang, S. X., & Dai, C. S., Natural convection around a pair of hot and cold horizontal microtubes at low Rayleigh numbers, Applied Thermal Engineering, , 72(1) (2014) 114-119.
[15] Y.G. Park, Yoon, H. S., & Ha, M. Y. , Natural convection in square enclosure with hot and cold cylinders at different vertical locations, International Journal of Heat and Mass Transfer, 95 (2012) 115-122.
[16] C.S. Dai, Li, M., Lei, H. Y., & Wang, S. X. , Numerical simulation of natural convection between hot and cold microtubes in a cylinder enclosure, International Journal of Thermal Sciences,, 95 (2015) 115-122.
[17] C. Choi, Jeong, S., Ha, M. Y., & Yoon, H. S. , Effect of a circular cylinder’s location on natural convection in a rhombus enclosure, International Journal of Heat and Mass Transfer, 77 (2014) 60-73.
[18] S.M. Vanaki, Ganesan, P., & Mohammed, H. A. , Numerical study of convective heat transfer of nanofluids: a review, Renewable and Sustainable Energy Reviews, 54 (2016) 1212-1239.
[19] K.H. Solangi, Kazi, S. N., Luhur, M. R., Badarudin, A., Amiri, A., Sadri, R. & Teng, K. H. , A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids, Energy, 89 (2015) 1065-1086.
[20] L.P. Aoki, Schulz, H. E., & Maunsell, M. G. , An MHD Study of the Behavior of an Electrolyte Solution using3D Numerical Simulation and Experimental results, Comsol Conference (2013).
[21] M. Afrand, Karimipour, A., Nadooshan, A. A., & Akbari, M. , The variations of heat transfer and slip velocity of FMWNT-water nano-fluid along the micro-channel in the lack and presence of a magnetic field, Physica E: Low-dimensional Systems and Nanostructures, 84 (2016) 474-481.
[22] K.M. Isaac, Sen, D., Leventis, N., & Fritsch, I. , Simulation of electrochemical MHD induced flow in a microfluidic cell without channels, 6th AIAA Theoretical Fluid Mechanics Conference,  (2011) 3392.
[23] A. Karimipour, Nezhad, A. H., D’Orazio, A., Esfe, M. H., Safaei, M. R., & Shirani, E. , Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, European Journal of Mechanics-B/Fluids, 49 (2015) 89-99.
[24] S.K. Das, Choi, S. U., Yu, W., & Pradeep, T. , Nanofluids: science and technology
John Wiley & Sons, 2007.
[25] E.I.J.o.H.a.M.T. Bilgen, Natural convection in cavities with a thin fin on the hot wall., 48 (2005) 3493-3505.
[26] A. Ben-Nakhi, and Ali J. Chamkha. "." International journal of thermal sciences Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length, 46 (2007) 467-478.
[27] K. Khanafer, AlAmiri, A., & Bull, J., Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall, International Journal of Heat and Mass Transfer, 87 (2015) 59-70.
[28] G.R. Kefayati, Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure., International Journal of Heat and Mass Transfer, 92 (2016) 1066-1089.
[29] S.M. Mirabedin, & Farhadi, F., Natural convection in circular enclosures heated from below for various central angles, Case Studies in Thermal Engineering, 8 (2016) 322-329.
[30] S.C. Kakarantzas, Sarris, I. E., Grecos, A. P., & Vlachos, N. S., Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature, International Journal of Heat and Mass Transfer,, 52(1-2) (2009) 250-259.
[31] H.R. Ashorynejad, Mohamad, A. A., & Sheikholeslami, M. , Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method, International Journal of Thermal Sciences, 64 (2013) 240-250.
[32] N. Rudraiah, Barron, R. M., Venkatachalappa, M., & Subbaraya, C. K., Effect of a magnetic field on free convection in a rectangular enclosure, International Journal of Engineering Science, 33(8) (1995) 1075-1084.
[33] H.F. Öztop, Rahman, M. M., Ahsan, A., Hasanuzzaman, M., Saidur, R., Al-Salem, K., & Rahim, N. A. , MHD natural convection in an enclosure from two semi-circular heaters on the bottom wall., International Journal of Heat and Mass Transfer, 55(7-8), (2012) 1844-1854.
[34] F. Selimefendigil, & Öztop, H. F. , Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid, Physica A: Statistical Mechanics and its Applications,, 540 (2020) 123004.
[35] D.A. Nield, & Kuznetsov, A. V. , The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid., International Journal of Heat and Mass Transfer, 52(25-26) (2009) 5792-5795.
[36] H. Zargartalebi, Noghrehabadi, A., Ghalambaz, M., & Pop, I., Natural convection boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid: case of variable thermophysical properties, Transport in Porous Media, 107(1) (2015) 153-170.
[37] J. Buongiorno, Convective transport in nanofluids, Journal of heat transfer, 128(3) (2006) 240-250.
[38] C. Beckermann, Ramadhyani, S., & Viskanta, R. , Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure, Journal of heat transfer, 109(2) (1987) 363-370.
[39] G. Yesiloz, & Aydin, O. (). . , , . Natural convection in an inclined quadrantal cavity heated and cooled on adjacent walls, Experimental Thermal and Fluid Science, 35-6 (2011) 1169-1176.
[40] A. Tahmasebi, Mahdavi, M., & Ghalambaz, M., Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model, Numerical Heat Transfer, Part A: Applications, 73-4 (2018) 254-276.