طراحی کنترل کننده تحمل پذیر خطا برای ماهواره با درنظر گرفتن محدودیت دامنه ورودی و عدم قطعیت در آسیب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده برق، دانشگاه مهندسی فناوریهای نوین قوچان

2 استادیار، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 استاد، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

در این مقاله، هدف، طراحی کنترل کننده ردیاب تحمل پذیر خطا برای زیر سیستم کنترل وضعیت یک ماهواره با معادلات دینامیک غیرخطی می‌باشد. وظیفه این کنترل کننده، حفظ پایداری و عملکرد مناسب سیستم حلقه بسته در هنگام بروز آسیب ناشناخته در عملگر، در حضور اغتشاش خارجی کراندار و محدودیت دامنه ورودی است. مبنای این کنترل کننده بر پایه کنترل ساختار متغیر بوده و با استفاده از روش مستقیم لیاپانوف، کرانداری غایی سیگنال‌های خطای حالت اثبات شده است. کنترل‌کننده پیشنهادی، بر خلاف سایر روش‌های موجود، به اطلاعات دقیق آسیب وابسته نبوده و تنها در روند طراحی آن، از کران کمینه و بیشینه آسیب، استفاده شده است. همچنین به جهت خواص جبری مناسب و عدم وجود تکینگی در نمایش وضعیت به کمک کواترنیونها، استفاده از این پارامترها در دستور کار قرار گرفته است. نتایج شبیه‌سازی، نشان از عملکرد مناسب کنترلکننده پیشنهادی در حضور اغتشاش خارجی و آسیب ناشناخته موجود در عملگر دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spacecraft Fault Tolerant Attitude Control Design under Control Input Saturation and Uncertainty in Fault Information

نویسندگان [English]

  • Danyal Bustan 1
  • Seyyed Kamal Hosseini Sani 2
  • Naser Pariz 3
1
2
3
چکیده [English]

In this paper, a continuous stable tracking control algorithm is proposed for spacecraft in the presence of unknown actuator failure, control input saturation and external disturbances. The design method is based on variable structure control and has the following properties: 1) fast and accurate response in the presence of bounded disturbances; 2) robust to the partial loss of actuator effectiveness; 3) explicit consideration of control input saturation. In contrast to traditional fault-tolerant control methods, the proposed controller does not require knowledge of the actuator faults and is implemented without explicit fault detection and isolation processes. In the proposed controller, a single parameter is adjusted dynamically in such a way that it is possible to prove the ultimate boundedness of both attitude and angular velocity errors. The stability proof is based on a Lyapunov direct method and the properties of the singularity free quaternion representation of spacecraft error dynamics. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of external disturbances, actuator multiplicative faults, and control input saturation.

کلیدواژه‌ها [English]

  • Fault tolerant control
  • Attitude control
  • actuator multiplicative fault
  • Tracking
  • variable structure control
[1] بوستان، دانیال؛ حسینی ثانی، سید کمال؛ پریز، ناصر؛ ”کنترل تحمل پذیر خطا برای ماهواره به روش معکوس دینامیک غیرخطی“، دوازدهمین کنفرانس انجمن هوافضای ایران ، 1391
[2] Zhang, Y.,Jiang, J., 2008. “Bibliographical review on reconfigurable fault-tolerant control systems”, Annual
Reviews in Control ,32, pp. 229- 252.
[3] Jiang, J.,Yu, X., 2012. “Fault-tolerant control systems: A comparative study between active and passive
approaches”, Annual Reviews in Control ,36, pp. 60-72.
[4] Yingchun, Z., Yu, G., Yu, J.,Xueqin, C., 2010. “LMIbased design of robust fault-tolerant controller”, 3rd
International Symposium on Systems and Control in Aeronautics and Astronautics , pp. 353- 356.
[5] Fang, L., Jian Liang, W.,Guang-Hong, Y., 2002.“Reliable robust flight tracking control: an LMI approach”, IEEE Transactions on Control Systems Technology ,10, pp. 76- 89
[6] Jin, X., Yang, G.,Li, Y., 2010. “Robust fault-tolerant controller design for linear time-invariant systems
with actuator failures: an indirect adaptive method”,Journal of Control Theory and Applications, 8, pp.471- 478.
[7] Cai, W., Liao, X.,Song, D. Y., 2008. “Indirect robust adaptive fault -tolerant control for attitude tracking
of spacecraft”, Journal of Guidance Control and Dynamics ,31, pp. 1456- 1463
[8] Jin, X.-Z.,Yang, G.-H., 2009. “Robust adaptive faulttolerant compensation control with actuator failures
and bounded disturbances”, Acta Automatica Sinica, 35, pp. 305- 309.
[9] Benosman, M.,Lum, K. Y., 2009. “Application of absolute stability theory to robust control against loss
of actuator effectiveness”, IET Control Theory and Applications, 3, pp. 772- 788.
[10] Benosman, M.,Lum, K. Y., 2010. “Passive actuators' fault-tolerant control for affine nonlinear Systems”,
IEEE Transactions on Control Systems Technology,18, pp. 152- 163.
[11] Xiao, B., Hu, Q.,Friswell, M. I., 2011. “Robust fault tolerant control for spacecraft attitude stabilization
under actuator faults and bounded disturbance”,Journal of Dynamic Systems, Measurement, and Control, 133, pp. 051006- 8.
[12] Bustan D., Hosseini Sani S.K., Pariz N., 2014.“Immersion and invariance based fault tolerant adaptive spacecraft attitude control”, International Journal of Control, Automation and Systems, 12, no 2, pp. 333- 339.
[13] Hu, Q., Xiao, B.,Friswell, M. I., 2011. “Robust faulttolerant control for spacecraft attitude stabilisation
subject to input saturation”, IET Control Theory & Applications,5, pp. 271- 282.
[14] Zou, A.-M.,Kumar, K. D., 2011. “Adaptive fuzzy fault-tolerant attitude control of spacecraft”, Control
Engineering Practice ,19, pp. 10- 21.
[15] Bustan D., Hosseini Sani S.K., Pariz N., 2014.“adaptive fault-tolerant spacecraft attitude control
design with transient response control”, IEEE/ASME Transactions on Mechatronics, 19, no. 4, pp. 1404- 1411.
[16] Bustan D., Pariz N., Hosseini Sani S.K., 2014.“Robust fault tolerant tracking control design for spacecraft under control input saturation”, ISA Transactions, 53, no. 4, pp. 1073- 1080.
[17] Khalil, H. K., 2002. “Nonlinear systems”, Prentice Hall ; London : Pearson Education,3rd ed., Upper Saddle River, N.J.