[1] L. Kachanov, Time of the rupture process under creep conditions, Izy Akad, Nank SSR Otd Tech Nauk, 8 (1958) 26-31.
[2] Y.N. Robotnov, Creep problems in structural members, North-HoUand Publishing Co., Amsterdam, (1969) 358.
[3] J.-L. Chaboche, Thermodynamically founded CDM models for creep and other conditions, in: Creep and Damage in Materials and structures, Springer, 1999, pp. 209-283.
[4] J. Lemaitre, A course on damage mechanics, Springer Science & Business Media, 2012.
[5] J.-L. Chaboche, Continuum damage mechanics: Part I—General concepts, (1988).
[6] J. Simo, J. Ju, Strain-and stress-based continuum damage models—II. Computational aspects, International journal of solids and structures, 23(7) (1987) 841-869.
[7] J.C. Simo, J. Ju, Strain-and stress-based continuum damage models—I. Formulation, International journal of solids and structures, 23(7) (1987) 821-840.
[8] J. Cordebois, F. Sidoroff, Damage induced elastic anisotropy, in: Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, Springer, 1982, pp. 761-774.
[9] N. Bonora, D. Gentile, A. Pirondi, G. Newaz, Ductile damage evolution under triaxial state of stress: theory and experiments, International Journal of Plasticity, 21(5) (2005) 981-1007.
[10] M. Brünig, O. Chyra, D. Albrecht, L. Driemeier, M. Alves, A ductile damage criterion at various stress triaxialities, International journal of plasticity, 24(10) (2008) 1731-1755.
[11] L. Malcher, E. Mamiya, An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant, International Journal of Plasticity, 56 (2014) 232-261.
[12] V.N. Van Do, The behavior of ductile damage model on steel structure failure, Procedia engineering, 142 (2016) 26-33.
[13] G. Majzoobi, M. Kashfi, N. Bonora, G. Iannitti, A. Ruggiero, E. Khademi, Damage characterization of aluminum 2024 thin sheet for different stress triaxialities, Archives of Civil and Mechanical Engineering, 18 (2018) 702-712.
[14] S. Razanica, R. Larsson, B. Josefson, A ductile fracture model based on continuum thermodynamics and damage, Mechanics of Materials, 139 (2019) 103197.
[15] N. Bonora, G. Testa, A. Ruggiero, G. Iannitti, D. Gentile, Continuum damage mechanics modelling incorporating stress triaxiality effect on ductile damage initiation, Fatigue & Fracture of Engineering Materials & Structures, (2020).
[16] M. Ganjiani, A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle, European Journal of Mechanics-A/Solids, (2020) 104048.
[17] K. Hayakawa, S. Murakami, Y. Liu, An irreversible thermodynamics theory for elastic-plastic-damage materials, European Journal of Mechanics-A/Solids, 17(1) (1998) 13-32.
[18] J. Lemaitre, R. Desmorat, Engineering damage mechanics: ductile, creep, fatigue and brittle failures, Springer Science & Business Media, 2005.
[19] M. Lemaire, Structural reliability, John Wiley & Sons, 2013.
[20] A. Haldar, S. Mahadevan, Reliability assessment using stochastic finite element analysis, John Wiley & Sons, 2000.
[21] M.A. Farsi, A.R. Sehat, Experimental and Numerical Study on Aluminum Damage Using a Nonlinear Model of Continuum Damage Mechanics, Journal of Applied and Computational Sciences in Mechanics, 27(2) (2016) 41-54, (in Persian).
[22] M.A. Farsi, A.R. Sehat, Comparison of Nonlinear Models for Prediction of Continuum Damage in Aluminum under Different Loading, Joural of Mechanical Engineering, 46(4) (2017) 211-220, (in Persian).