[1] S. Nah, Z. Zhong, A microgripper using piezoelectric actuation for micro-object manipulation, Sensors and Actuators A: Physical, 133(1) (2007) 218-224.
[2] P. Dario, M.C. Carrozza, A. Benvenuto, A. Menciassi, Micro-systems in biomedical applications, Journal of Micromechanics and Microengineering, 10(2) (2000) 235.
[3] A. Alogla, P. Scanlan, W. Shu, R. Reuben, A scalable syringe-actuated microgripper for biological manipulation, Procedia Engineering, 47 (2012) 882-885.
[4] Y. Zhang, Y. Yu, Z. Zhang, X. Zhang, Structure and Design of Microgrippers: A Survey, in: 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC), IEEE, 2017, pp. 139-143.
[5] P. Zhang, W. GUO-ying, Y.-l. HAO, Z.-j. LI, Development of microgripper technology [J], Optics and Precision Engineering, 3 (2000) 292-296.
[6] L. Saggere, S. Kota, Synthesis of planar, compliant four-bar mechanisms for compliant-segment motion generation, Journal of Mechanical Design, 123(4) (2001) 535-541.
[7] A.E. Albanesi, V.D. Fachinotti, M.A. Pucheta, A. Cardona, Synthesis of compliant mechanisms for segment-motion generation tasks, Mecánica Computacional, 26 (2007) 2919-1930.
[8] L.L. Howell, Compliant mechanisms, John Wiley & Sons, 2001.
[9] M.P. Bendsøe, O. Sigmund, Topology optimization : theory, methods and applications, Springer, Berlin [u.a.], 2003.
[10] V. Megaro, J. Zehnder, M. Bächer, S. Coros, M.H. Gross, B. Thomaszewski, A computational design tool for compliant mechanisms, ACM Trans. Graph., 36(4) (2017) 82:81-82:12.
[11] S. Linß, S. Henning, L. Zentner, Modeling and design of flexure hinge-based compliant mechanisms, in: Kinematics, IntechOpen, 2019.
[12] L. Yin, G. Ananthasuresh, A novel topology design scheme for the multi-physics problems of electro-thermally actuated compliant micromechanisms, Sensors and Actuators A: Physical, 97 (2002) 599-609.
[13] O. Sardan, D.H. Petersen, K. Mølhave, O. Sigmund, P. Bøggild, Topology optimized electrothermal polysilicon microgrippers, Microelectronic Engineering, 85(5) (2008) 1096-1099.
[14] A.N. Reddy, N. Maheshwari, D.K. Sahu, G. Ananthasuresh, Miniature compliant grippers with vision-based force sensing, Robotics, IEEE Transactions on, 26(5) (2010) 867-877.
[15] R. Horstmann, L.K. Ardi, G.P. Rehder, E.C. Silva, M.N.P. Carreno, Development of ETM microgrippers using Topology Optimization, in: Microelectronics Technology and Devices (SBMicro), 2014 29th Symposium on, IEEE, 2014, pp. 1-5.
[16] J. Liang, X. Zhang, B. Zhu, Nonlinear topology optimization of parallel-grasping microgripper, Precision Engineering, 60 (2019) 152-159.
[17] B. Zhu, X. Zhang, H. Zhang, J. Liang, H. Zang, H. Li, R. Wang, Design of compliant mechanisms using continuum topology optimization: A review, Mechanism and Machine Theory, 143 (2020) 103622.
[18] R. Bharanidaran, T. Ramesh, Numerical simulation and experimental investigation of a topologically optimized compliant microgripper, Sensors and Actuators A: Physical, 205 (2014) 156-163.
[19] R. Bharanidaran, T. Ramesh, A modified post-processing technique to design a compliant based microgripper with a plunger using topological optimization, The International Journal of Advanced Manufacturing Technology, 93(1-4) (2017) 103-112.
[20] R. Ansola, E. Veguería, J. Canales, J.A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design, Finite Elements in Analysis and Design, 44(1) (2007) 53-62.
[21] F.R. David, J.A. Adams, Mathematical elements for computer graphics, McGraw-Hill International, (1990).
[22] P.-S. Tang, K.-H. Chang, Integration of topology and shape optimization for design of structural components, Structural and Multidisciplinary Optimization, 22(1) (2001) 65-82.
[23] K. Shrivastava, S.S. Joshi, Design and development of compliant microgripper-based assembly station, in: ASME 2016 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers Digital Collection, 2016.