[1] Khodadadi, A and Liaghat, G., 2012. ‘’Experimental and numerical investigation of penetration into targets made of kevlar laminate with STF’’. MSc Thesis, Tarbiat Modares University, Tehran, (In Persian).
[2] V.K. Srivastava, Modeling and mechanical performance of carbon nanotube/epoxy resin composites, Materials & Design, 39 (2012) 432-436.
[3] N. Naik, P. Shrirao, B. Reddy, Ballistic impact behavior of woven fabric composites: Formulation, International Journal of Impact Engineering, 32(9) (2006) 1521-1552.
[4] T.J. Kang, C. Kim, Impact energy absorption mechanism of largely deformable composites with different reinforcing structures, Fibers and Polymers, 1(1) (2000) .45-54
[5] S. Ishikawa, A. Tokuda, H. Kotera, Numerical simulation for fibre reinforced rubber, Journal of Computational Science and Technology, 2(4) (2008) 587-596.
[6] X. Peng, G. Guo, N. Zhao, An anisotropic hyperelastic constitutive model with shear interaction for cord– rubber composites, Composites science and technology, 78 (2013) 69-74.
[7] R. Mohamadipoor, E. Zamani, M. H. Pol, Analytical investigation of energy absorption and damage in the composite plates reinforced with nanoparticles under high velocity impact, Aerospace Knowledge and Technology Journal, 7(2) (2018) 35–50. (In Persian).
[8] H. Ahmadi, G. Liaghat, Analytical and experimental investigation of high velocity impact on foam core sandwich panel. Polymer Composites, 40 (6) (2019)2258-2272.
[9] A. Khodadadi, G. Liaghat, A.R. Bahramian, H. Ahmadi, Y. Anani, S. Asemani, O. Razmkhah, High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: a comparative study, Composite Structures, 216 (2019) 159-167.
[10] M. Hedayatian, G. Liaghat, G. Rahimi, M. H. Pol, Numerical and Experimental Analyses Projectile Penetration in Grid Cylindrical Composite Structures Under High Velocity Impact, Modares Mechanical. Engineering, 14(9) (2014) 17–26. (In Persian).
[11] A. Taherzadeh-Fard, G. Liaghat, H. Ahmadi, O. Razmkhah, S.C. Charandabi, M.A. Zarezadeh-mehrizi, A. Khodadadi, Composite Structures, (2020) 112264.
[12] R. Ogden, Elements of the theory of finite, Nonlinear Elasticity: Theory and Applications, 283 (2001) 1.
[13] L.B. Tan, K.M. Tse, H.P. Lee, V.B.C. Tan, S.P. Lim, Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: Experiments and finite element simulations, International Journal of Impact Engineering, 50 (2012) 99-112.
[14] I. Taraghi, A. Fereidoon, A. Mohyeddin, The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites, Steel and Composite Structures, 17(6) (2014) 825-834.
[15] J. Van Hoof, D. Cronin, M. Worswick, K. Williams, D. Nandlall, Numerical head and composite helmet models to predict blunt trauma, in: Proceedings of 19th International Symposium on Ballistics, Interlaken, Switzerland, 2001.
[16] N. Naik, Analysis of woven fabric composites for ballistic protection, in: Advanced Fibrous Composite Materials for Ballistic Protection, Elsevier, 2016, pp. .262-712
[17] S. Morye, P. Hine, R. Duckett, D. Carr, I. Ward, Modelling of the energy absorption by polymer composites upon ballistic impact, Composites science and technology, 60(14) (2000) 2631-2642.
[18] W. Mars, A. Fatemi, Factors that affect the fatigue life of rubber: a literature survey, Rubber Chemistry and Technology, 77(3) (2004) 391-412.
[19] S.S. Asemani, G. Liaghat, H. Ahmadi, Y. Anani, Investigation of Ballistic Impact Analysis on Single Layer Kevlar / Elastomer Composite Using Energy equations of Hyperelastic Materials. 27th Annual International Conference of Iranian Society of Mechanical Engineering. Tehran, 2019 (In Persian