[1] R.W.Ogden, Nonlinear Elastic Deformations, Dover Publications, New York, 1997.
[2] T. Shearer, A new strain energy function for the hyperelastic modelling of ligaments and tendons based on fascicle microstructure, Journal of Biomechanics, 48(2) (2015) 290-297.
[3] K. Upadhyay, G. Subhash, D. Spearot, Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials, Journal of the Mechanics and Physics of Solids, (2019) 103777-103777.
[4] L. Liu, Y. Li, Mechanics of Materials A visco-hyperelastic softening model for predicting the strain rate e ff ects of 3D-printed soft wavy interfacial layer, Mechanics of Materials, 137(May) (2019) 103128-103128.
[5] S. Fahimi, M. Baghani, M.-r. Zakerzadeh, A. Eskandari, Developing a visco-hyperelastic material model for 3D finite deformation of elastomers, Finite Elements in Analysis & Design, 140(July) (2017) 1-10.
[6] R.M. Chen, Some nonlinear dispersive waves arising in compressible hyperelastic plates, International Journal of Engineering Science, 44(18-19) (2006) 1188-1204.
[7] P.B. Gonçalves, R.M. Soares, D. Pamplona, Nonlinear vibrations of a radially stretched circular hyperelastic membrane, Journal of Sound and Vibration, 327(1-2) (2009) 231-248.
[8] I. Dayyani, M.I. Friswell, S. Ziaei-Rad, E.I. Saavedra Flores, Equivalent models of composite corrugated cores with elastomeric coatings for morphing structures, Composite Structures, 104 (2013) 281-292.
[9] S. Faghihi, A. Karimi, M. Jamadi, R. Imani, R. Salarian, Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: Experimental and numerical validation of hyperelastic model, Materials Science and Engineering: C, 38 (2014) 299-305.
[10] R. Gupta, D. Harursampath, Dielectric elastomers: Asymptotically-correct three-dimensional displacement field, International Journal of Engineering Science, 87 (2015) 1-12.
[11] I.B. Badriev, G.Z. Garipova, M.V. Makarov, V.N. Paimushin, R.F. Khabibullin, Solving Physically Nonlinear Equilibrium Problems for Sandwich Plates with a Transversally Soft Core, 36(4) (2015) 474-481.
[12] P. Balasubramanian, G. Ferrari, M. Amabili, Z.J.G.N. del Prado, Experimental and theoretical study on large amplitude vibrations of clamped rubber plates, International Journal of Non-Linear Mechanics, 94 (2017) 36-45.
[13] A.I. Yusuf, N.M. Amin, Determination of Rayleigh Damping Coefficient for Natural Damping Rubber Plate Using Finite Element Modal Analysis, (2015).
[14] M. Amabili, P. Balasubramanian, I.D.B.G. Ferrari, R. Garziera, K. Riabova, Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate, Journal of Sound and Vibration, (September) (2016).
[15] I. Breslavsky, M. Amabili, M. Legrand, Physically and Geometrically Nonlinear Vibrations of Thin Rectangular Plates, 3(2) (2012) 1-2.
[16] I.D. Breslavsky, M. Amabili, M. Legrand, Nonlinear vibrations of thin hyperelastic plates, Journal of Sound and Vibration, 333(19) (2014) 4668-4681.
[17] P. Balasubramanian, G. Ferrari, M. Amabili, Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime, Mechanical Systems and Signal Processing, 111 (2018) 376-398.
[18] F. Alijani, M. Amabili, Non-linear vibrations of shells: A literature review from 2003 to 2013, International Journal of Non-Linear Mechanics, 58(i) (2014) 233-257.
[19] J. Dervaux, P. Ciarletta, M. Ben Amar, Morphogenesis of thin hyperelastic plates: A constitutive theory of biological growth in the Föppl–von Kármán limit, Journal of the Mechanics and Physics of Solids, 57(3) (2009) 458-471.
[20] P.H. Wen, Y.C. Hon, Geometrically nonlinear analysis of Reissner-Mindlin plate by meshless computation, CMES - Computer Modeling in Engineering and Sciences, 21(3) (2007) 177-191.
[21] K.M. Liew, L.X. Peng, S. Kitipornchai, Nonlinear analysis of corrugated plates using a FSDT and a meshfree method, Computer Methods in Applied Mechanics and Engineering, 196(21-24) (2007) 2358-2376.
[22] M. Naffa, H.J. Al-Gahtani, RBF-based meshless method for large deflection of thin plates, Engineering Analysis with Boundary Elements, 31(4) (2007) 311-317.
[23] J. Singh, K.K. Shukla, Nonlinear flexural analysis of laminated composite plates using RBF based meshless method, Composite Structures, 94(5) (2012) 1714-1720.
[24] J. Singh, K.K. Shukla, Nonlinear flexural analysis of functionally graded plates under different loadings using RBF based meshless method, Engineering Analysis with Boundary Elements, 36(12) (2012) 1819-1827.
[25] F. Liu, J. Zhao, Upper bound limit analysis using radial point interpolation meshless method and nonlinear programming, International Journal of Mechanical Sciences, 70 (2013) 26-38.
[26] Z.X. Lei, L.W. Zhang, K.M. Liew, Meshless modeling of geometrically nonlinear behavior of CNT-reinforced functionally graded composite laminated plates, Applied Mathematics and Computation, 295 (2017) 24-46.
[27] V.N.V. Do, C.H. Lee, Quasi-3D higher-order shear deformation theory for thermal buckling analysis of FGM plates based on a meshless method, Aerospace Science and Technology, 82-83(September) (2018) 450-465.
[28] E. Barbieri, L. Ventura, D. Grignoli, E. Bilotti, A meshless method for the nonlinear von Kármán plate with multiple folds of complex shape: A bridge between cracks and folds, Computational Mechanics, 64(3) (2019) 769-787.
[29] H. Nourmohammadi, B. Behjat, Geometrically nonlinear analysis of functionally graded piezoelectric plate using mesh-free RPIM, Engineering Analysis with Boundary Elements, 99(June 2018) (2019) 131-141.
[30] K.W. Cassel, Variational Methods with Applications in Science and Engineering, 2004.
[31] J. Ghaboussi, D.A. Pecknold, X.S. Wu, Nonlinear Computational Solid Mechanics, CRC Press, 2017.
[32] G.R. Liu, Meshfree methods, CRC Press, 2006.