پایداری و دوشاخگی تیر دوار با سرعت دوران متغیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی مکانیک، دانشگاه شهید باهنر کرمان ، کرمان ، ایران

2 گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

3 دانشگاه شهید باهنر کرمان

چکیده

در این مقاله ارتعاشات غیر‌خطی یک تیغه دوار با سرعت دورانی متغیر بررسی می‌شود. تیغه دوار به صورت یک تیر اویلر- برنولی یک سر گیردار بدون عوامل غیر‌خطی هندسی در نظر گرفته شده است. سرعت زاویه‌ای به صورت مقدار ثابت فرض شده است که با دامنه کوچکی نوسان می‌کند. معادلات دیفرانسیل پاره‌ای غیر‌خطی حاکم بر تیر یک سر گیردار دوار با استفاده اصل همیلتون در حالت سه بعدی استخراج می‌شوند. سپس روش گالرکین بر روی معادلات دیفرانسیل پاره‌ای غیرخطی اعمال می‌شود تا سه معادله دیفرانسیل معمولی غیرخطی بدست آید. با اعمال روش مقیاس زمانی بر روی معادلات بدست‌آمده، شش معادله دیفرانسیل معمولی مرتبه اول بدست می‌آیند که تغییرات زمانی دامنه و فاز مودهای متداخل را نشان می‌دهد. سپس با استفاده از مقادیر ویژه ماتریس ژاکوبین معادلات مدولاسیون پایداری و دو شاخه‌ای‌شدن نقاط تعادل بدست می‌آیند. نتایج عددی نشان می‌دهند که نزدیک تشدید داخلی و تشدید خارجی نقاط تعادل پایداری خود را با نقاط زینی از دست می‌دهند. همچنین، انتقال انرژی بین مودها و جهش در دامنه مودها در حالت‌های مختلف تشدید داخلی در نمودارهای پاسخ فرکانسی اتفاق می‌افتد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stability and bifurcation of a rotating blade with varying speed

نویسندگان [English]

  • Ali Zamani 1
  • Malihe Eftekhari 2
  • Mojtaba Eftekhari 3
1 Department of Mechanical Engineering, Shaid Bahonar University of Kerman
2 Department of Mechanical Engineering, Sirjan University of Technology
3 Department of mechanical engineering,Shahid Bahonar University of Kerman, Kerman,Iran
چکیده [English]

In this paper, the nonlinear vibration of a rotating blade with varying rotating speeds is investigated. The rotating blade is considered as a rotating cantilever Euler-Bernoulli beam without geometric nonlinearity. The angular velocity is assumed as a constant value which is fluctuated with small amplitude. The nonlinear partial differential equations of the rotating cantilevered beam are derived in three-dimensional using Hamilton's principle. Then, the Galerkin discretization method is applied to the nonlinear partial differential equations to obtain three nonlinear ordinary differential equations. The method of multiple scales is utilized to derive six first-order ordinary differential equations to describe the time variation of amplitudes and phases of interacting modes. The stability and bifurcation of fixed points are obtained by using the eigenvalues of the Jacobian matrix of the modulation equations. Numerical results demonstrated that near the primary resonance and internal resonance the fixed points lose the stability through the saddle node bifurcation. Moreover, the transfer energy among the modes and jump in amplitude of modes occur in frequency response at the different cases of internal resonance.

کلیدواژه‌ها [English]

  • Bifurcation diagram
  • Rotating beam
  • Varying rotating speed
  • Internal and external resonance
  • Fixed points
[1] H. Arvin, F. Bakhtiari-Nejad, Non-linear modal analysis of a rotating beam, International Journal of Non-Linear Mechanics, 46(6) (2011) 877-897.
[2] J. Huang, R. Su, W. Li, S. Chen, Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances, Journal of Sound and Vibration, 330(3) (2011) 471-485.
[3] M.H. Ghayesh, Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance, International Journal of Mechanical Sciences, 53(11) (2011) 1022-1037.
[4] M. Yao, Y. Chen, W. Zhang, Nonlinear vibrations of blade with varying rotating speed, Nonlinear Dynamics, 68(4) (2012) 487-504.
[5] H. Arvin, F. Bakhtiari-Nejad, Nonlinear modal interaction in rotating composite Timoshenko beams, Composite Structures, 96 (2013) 121-134.
[6] W.-R. Chen, C.-S. Chen, Parametric instability of twisted Timoshenko beams with localized damage, International Journal of Mechanical Sciences, 100 (2015) 298-311.
[7] P. van der Male, K.N. van Dalen, A.V. Metrikine, The effect of the nonlinear velocity and history dependencies of the aerodynamic force on the dynamic response of a rotating wind turbine blade, Journal of Sound and Vibration, 383 (2016) 191-209.
[8] H. Arvin, Y.-Q. Tang, A.A. Nadooshan, Dynamic stability in principal parametric resonance of rotating beams: Method of multiple scales versus differential quadrature method, International Journal of Non-Linear Mechanics, 85 (2016) 118-125.
[9] G. Zhao, Z. Wu, Coupling vibration analysis of rotating three-dimensional cantilever beam, Computers & Structures, 179 (2017) 64-74.
[10] S. Sina, H. Haddadpour, Axial–torsional vibrations of rotating pretwisted thin walled composite beams, International Journal of Mechanical Sciences, 80 (2014) 93-101.
[11] H. Arvin, W. Lacarbonara, A fully nonlinear dynamic formulation for rotating composite beams: nonlinear normal modes in flapping, Composite structures, 109 (2014) 93-105.
[12] R.-A. Jafari-Talookolaei, Analytical solution for the free vibration characteristics of the rotating composite beams with a delamination, Aerospace Science and Technology, 45 (2015) 346-358.
[13] O. Thomas, A. Sénéchal, J.-F. Deü, Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams, Nonlinear dynamics, 86(2) (2016) 1293-1318.
[14] Y. Qin, X. Li, E. Yang, Y. Li, Flapwise free vibration characteristics of a rotating composite thin-walled beam under aerodynamic force and hygrothermal environment, Composite Structures, 153 (2016) 490-503.
[15] F. Bekhoucha, S. Rechak, L. Duigou, J. Cadou, Nonlinear free vibrations of centrifugally stiffened uniform beams at high angular velocity, Journal of Sound and Vibration, 379 (2016) 177-190.
[16] J. Tian, J. Su, K. Zhou, H. Hua, A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects, Journal of Sound and Vibration, 426 (2018) 258-277.
[17] X. Xu, Q. Han, F. Chu, Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic field, International Journal of Non-Linear Mechanics, 95 (2017) 59-72.
[18] H. Arvin, A. Arena, W. Lacarbonara, Nonlinear vibration analysis of rotating beams undergoing parametric instability: Lagging-axial motion, Mechanical Systems and Signal Processing, 144 (2020) 106892.
[19] L. Perko, Differential equations and dynamical systems, Springer Science & Business Media, 2013.
[20] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer Science & Business Media, 2003.
[21] L. Meirovitch, Fundamentals of vibrations, Waveland Press, 2010.
[22] A.H. Nayfeh, Introduction to perturbation techniques, John Wiley & Sons, 2011.
[23] A.H. Nayfeh, Nonlinear interactions, Wiley, New York, 2000.