[1] H. Arvin, F. Bakhtiari-Nejad, Non-linear modal analysis of a rotating beam, International Journal of Non-Linear Mechanics, 46(6) (2011) 877-897.
[2] J. Huang, R. Su, W. Li, S. Chen, Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances, Journal of Sound and Vibration, 330(3) (2011) 471-485.
[3] M.H. Ghayesh, Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance, International Journal of Mechanical Sciences, 53(11) (2011) 1022-1037.
[4] M. Yao, Y. Chen, W. Zhang, Nonlinear vibrations of blade with varying rotating speed, Nonlinear Dynamics, 68(4) (2012) 487-504.
[5] H. Arvin, F. Bakhtiari-Nejad, Nonlinear modal interaction in rotating composite Timoshenko beams, Composite Structures, 96 (2013) 121-134.
[6] W.-R. Chen, C.-S. Chen, Parametric instability of twisted Timoshenko beams with localized damage, International Journal of Mechanical Sciences, 100 (2015) 298-311.
[7] P. van der Male, K.N. van Dalen, A.V. Metrikine, The effect of the nonlinear velocity and history dependencies of the aerodynamic force on the dynamic response of a rotating wind turbine blade, Journal of Sound and Vibration, 383 (2016) 191-209.
[8] H. Arvin, Y.-Q. Tang, A.A. Nadooshan, Dynamic stability in principal parametric resonance of rotating beams: Method of multiple scales versus differential quadrature method, International Journal of Non-Linear Mechanics, 85 (2016) 118-125.
[9] G. Zhao, Z. Wu, Coupling vibration analysis of rotating three-dimensional cantilever beam, Computers & Structures, 179 (2017) 64-74.
[10] S. Sina, H. Haddadpour, Axial–torsional vibrations of rotating pretwisted thin walled composite beams, International Journal of Mechanical Sciences, 80 (2014) 93-101.
[11] H. Arvin, W. Lacarbonara, A fully nonlinear dynamic formulation for rotating composite beams: nonlinear normal modes in flapping, Composite structures, 109 (2014) 93-105.
[12] R.-A. Jafari-Talookolaei, Analytical solution for the free vibration characteristics of the rotating composite beams with a delamination, Aerospace Science and Technology, 45 (2015) 346-358.
[13] O. Thomas, A. Sénéchal, J.-F. Deü, Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams, Nonlinear dynamics, 86(2) (2016) 1293-1318.
[14] Y. Qin, X. Li, E. Yang, Y. Li, Flapwise free vibration characteristics of a rotating composite thin-walled beam under aerodynamic force and hygrothermal environment, Composite Structures, 153 (2016) 490-503.
[15] F. Bekhoucha, S. Rechak, L. Duigou, J. Cadou, Nonlinear free vibrations of centrifugally stiffened uniform beams at high angular velocity, Journal of Sound and Vibration, 379 (2016) 177-190.
[16] J. Tian, J. Su, K. Zhou, H. Hua, A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects, Journal of Sound and Vibration, 426 (2018) 258-277.
[17] X. Xu, Q. Han, F. Chu, Nonlinear vibration of a rotating cantilever beam in a surrounding magnetic field, International Journal of Non-Linear Mechanics, 95 (2017) 59-72.
[18] H. Arvin, A. Arena, W. Lacarbonara, Nonlinear vibration analysis of rotating beams undergoing parametric instability: Lagging-axial motion, Mechanical Systems and Signal Processing, 144 (2020) 106892.
[19] L. Perko, Differential equations and dynamical systems, Springer Science & Business Media, 2013.
[20] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer Science & Business Media, 2003.
[21] L. Meirovitch, Fundamentals of vibrations, Waveland Press, 2010.
[22] A.H. Nayfeh, Introduction to perturbation techniques, John Wiley & Sons, 2011.
[23] A.H. Nayfeh, Nonlinear interactions, Wiley, New York, 2000.