جوشکاری نقطه‎ای اغتشاشی اصطکاکیِ الکتروپلاستیک برای اتصال‎دهی آلومینیوم 6T-6061 به فولاد گالوانیزه دو فازی 590

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه خواجه نصیرالدین طوسی، تهران، ایران

2 دانشگاه صنعتی خواجه نصیرالدین طوسی *دانشکده مهندسی مکانیک

چکیده

جوشکاریِ نقطه‎ ای اغتشاشی اصطکاکی توانایی بالایی در اتصال‎ دهی آلومینیوم ‎های کم ‎شکل‎ پذیر به فولادهای مستحکم نشان داده‎ است. در این فرآیند تحقیقات گسترده‎ای جهت دستیابی به استحکام بالا و همچنین افزایش عمر ابزار در دهه اخیر انجام شد. اثر الکتروپلاستیک در انواع فرآیندها با ماهیت دوستدار محیط زیست و راندمان بالا، سبب کاهش تنش سیلان و سایش ابزار، بهبود رفتار پلاستیسیته و جریان مواد شده ‎است. از طرفی افزودن نانوذرات بر ناحیه اتصال، علی‎رغم بهبود استحکام، سبب افزایش سایش ابزار شد. در این مقاله استحکام اتصال و توان خروجی اسپیندل در جوشکاری نقطه‎ ای اغتشاشی اصطکاکیِ الکتروپلاستیک برای اتصال‎ دهی آلومینیوم 6T-6061 با ضخامت mm 1 به فولاد دوفازی 590 ورق mm 5/1 بررسی شد. برای تحلیل آماری از طرح K2 با لحاظ چهار پارامترِ سرعت دورانی (1000 و  rpm2000)، زمان ماند (2 و s 4)، جریان الکتریکی (250 و A 500) و افزودن نانوذرات تقویتی کاربید سیلیسیم استفاده گردید. مطالعه کمی چگالیِ جریان توسط کد اجزای محدود با کوپل حرارتی-الکتریکی انجام شد. نتایج نشان داد که اثر الکتروپلاستیک با تسریع در وقوع بازیابی و تبلورمجدد، تاثیری همسو با نانوذرات بر بهبود استحکام داشته و اثر منفیِ نانوذرات بر عمر ابزار را خنثی کرده و اتصال‎ هایی با نیروی شکست بیش از kN 7 ایجاد کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electroplastic friction stir spot welding for joining AA6061-T6 aluminum to galvanized DP590 steel

نویسندگان [English]

  • Abozar Barimani-Varandi 1
  • Abdolhossein Jalali Aghchai 2
1 Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 Faculty of Mechanical Engineering, K. N. Toosi University of Technology
چکیده [English]

The friction stir spot welding has shown great potential for joining low-ductility aluminum to high-strength steels. In the last decade, wide researches were done to achieve high strength and tool life enhancement in friction stir spot welding. The electroplastic effect, with its environmentally friendly nature and high efficiency, has resulted in a reduction of flow stress and tool wear, improvement of plasticity and material flow for various processes. On the other hand, adding nanoparticles to the friction stir spot welded area joint increased the tool wear despite the improved strength. In this paper, the joint strength and spindle output power are investigated in electroplastic friction stir spot welding process for joining of AA6061-T6 with 1 mm thickness to DP590 steel sheet of 1.5 mm. A 2K design was used for statistical analysis considering four parameters of rotational velocity (1000, 2000 rpm), dwell time (2, 4s), electrical current (250, 500A), and adding SiC reinforcing nanoparticles. A quantitative study of the current density was performed by the finite element code with thermal-electric coupling. Results showed that electroplastic effect had a compatible impact with nanoparticles on strength improvement by accelerating the occurrence of dynamic recovery and recrystallization, and neutralized the negative effect of nanoparticles on tool life since created joints with failure loads above 7 kN.

کلیدواژه‌ها [English]

  • Joining
  • Electroplastic friction stir spot welding
  • Al/St joint
  • Failure load
  • Failure mode
[1] A. Barimani-Varandi, A.J. Aghchai, Electrically-assisted mechanical clinching of AA6061-T6 aluminum to galvanized DP590 steel: effect of geometrical features on material flow and mechanical strength, Mechanics & Industry, 21(5) (2020) 529.
[2] A. Barimani-Varandi, S. Jamal Hosseinipour, Investigation of process parameters in production of cylindrical parts by gradient warm deep drawing, Modares Mechanical Engineering, 14(10) (2015) 187-194 (in Persain).
[3] A. Automation, Mazda develops world's first steel and aluminium joining technology using friction heat,  (2005).
[4] T. Pan, A. Joaquin, D.E. Wilkosz, L. Reatherford, J.M. Nicholson, Z. Feng, M.L. Santella, Spot friction welding for sheet aluminum joining, in:  Proceedings of the 5th international symposium of friction stir welding, Metz, France, 2004.
[5] M. Merzoug, M. Mazari, L. Berrahal, A. Imad, Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys, Materials & Design, 31(6) (2010) 3023-3028.
[6] Y. Sun, Y. Konishi, M. Kamai, H. Fujii, Microstructure and mechanical properties of S45C steel prepared by laser-assisted friction stir welding, Materials & Design, 47 (2013) 842-849.
[7] M. Ahmadnia, A. Seidanloo, R. Teimouri, Y. Rostamiyan, K.G. Titrashi, Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints, The International Journal of Advanced Manufacturing Technology, 78(9-12) (2015) 2009-2024.
[8] B. Vijendra, A. Sharma, Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics, Journal of Manufacturing Processes, 20 (2015) 234-244.
[9] X. Long, S.K. Khanna, Modelling of electrically enhanced friction stir welding process using finite element method, Science and Technology of Welding and Joining, 10(4) (2005) 482-487.
[10] K. Chen, X. Liu, J. Ni, Electrically Assisted Friction Stir Spot Welding of Aluminum Alloy to Advanced High Strength Steel, in:  ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, American Society of Mechanical Engineers Digital Collection, 2017.
[11] B.J. Ruszkiewicz, T. Grimm, I. Ragai, L. Mears, J.T. Roth, A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect, Journal of Manufacturing Science and Engineering, 139(11) (2017).
[12] M. Jafari Vardanjani, A. Araee, Shunting Effect in Resistance Spot Welded Joints of Aluminum Alloys, Amirkabir Journal of Mechanical Engineering, 50(3) (2018) 561-576 (in Persian).
[13] O. Troitskii, V. Likhtman, The anisotropy of the action of electron and gamma radiation on the deformation of zinc single crystals in the brittle state, in:  Soviet Physics Doklady, 1963, pp. 91.
[14] J. Asghar, N.V. Reddy, Importance of tool configuration in incremental sheet metal forming of difficult to form materials using electro-plasticity,  (2013).
[15] S. Wang, Effect of electric pulses on drawability and corrosion property of AZ31 magnesium alloy, Tsinghua University, Beijing,  (2009).
[16] H.-D. Nguyen-Tran, H.-S. Oh, S.-T. Hong, H.N. Han, J. Cao, S.-H. Ahn, D.-M. Chun, A review of electrically-assisted manufacturing, International Journal of Precision Engineering and Manufacturing-Green Technology, 2(4) (2015) 365-376.
[17] P. Santos, J. Oliveira, P.L. INÁCIO, Y. Chen, P. VILAÇA, R. Miranda, T.G. Santos, Recent developments in FSW assisted by electrical current hybrid process, in:  International Conference on Scientific and Technical Advances on Friction Stir Welding and Processing, 2017.
[18] S. Tebyani, K. Dehghani, Effects of SiC nanopowders on the mechanical properties and microstructure of interstitial free steel joined via friction stir spot welding, Materials & Design, 90 (2016) 660-668.
[19] M. Paidar, M.L. Sarab, Friction stir spot welding of 2024-T3 aluminum alloy with SiC nanoparticles, Journal of Mechanical Science and Technology, 30(1) (2016) 365-370.
[20] M. Asadollahi, A. Khalkhali, Optimization of mechanical and microstructural properties of friction stir spot welded AA 6061-T6 reinforced with SiC nanoparticles, Materials Research Express, 5(11) (2018) 116517.
[21] H. Badarinarayan, Y. Shi, X. Li, K. Okamoto, Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets, International Journal of Machine Tools and Manufacture, 49(11) (2009) 814-823.
[22] A. Barimani-Varandi, The non-isothermal hot deep drawing of AA5083 aluminum alloy, Mechanics & Industry, 21(1) (2020) 112.
[23] A. Barimani-Varandi, S.J. Hosseinipour, Numerical and experimental study on the effect of forming speed in gradient warm deep drawing process, Journal of Solid and Fluid Mechanics, 8(2) (2018) 51-66  (in Persain).
[24] J. Wang, H.-P. Wang, F. Lu, B.E. Carlson, D.R. Sigler, Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model, International Journal of Heat and Mass Transfer, 89 (2015) 1061-1072.
[25] D.C. Montgomery, Design and analysis of experiments, John wiley & sons, 2017.
[26] X. Song, L. Ke, L. Xing, F. Liu, C. Huang, Effect of plunge speeds on hook geometries and mechanical properties in friction stir spot welding of A6061-T6 sheets, The International Journal of Advanced Manufacturing Technology, 71(9-12) (2014) 2003-2010.
[27] R. Stephen, B. Anthony, Hierarchical linear models, Sage Publications, Thousand Oaks, CA, 2002.
[28] A. Joglekar, A. May, Product excellence through design of experiments, Cereal foods world, 32(12) (1987) 857-868.
[29] M. Molotskii, V. Fleurov, Magnetic effects in electroplasticity of metals, Physical review B, 52(22) (1995) 15829.
[30] X. Liu, S. Lan, J. Ni, Experimental study of electro-plastic effect on advanced high strength steels, Materials Science and Engineering: A, 582 (2013) 211-218.
[31] T.A. Perkins, T.J. Kronenberger, J.T. Roth, Metallic forging using electrical flow as an alternative to warm/hot working,  (2007).
[32] Y. Jiang, G. Tang, C. Shek, W. Liu, Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment, Journal of alloys and compounds, 509(11) (2011) 4308-4313.
[33] Z.S. Xu, Y.X. Chen, Effect of electric current on the recrystallization behavior of cold worked α-Ti, Scripta Metallurgica, 22(2) (1988) 187-190.
[34] Z. Xu, G. Tang, S. Tian, F. Ding, H. Tian, Research of electroplastic rolling of AZ31 Mg alloy strip, Journal of materials processing technology, 182(1-3) (2007) 128-133.
[35] H.-y. Tian, G.-y. Tang, F. Ding, Z.-H. Xu, Y.-B. Jiang, Research on electroplastic drawing of Mg-alloy wire, NONFERROUS METALS-BEIJING-, 59(2) (2007) 10.
[36] L. Guan, G. Tang, P.K. Chu, Recent advances and challenges in electroplastic manufacturing processing of metals, Journal of materials research, 25(7) (2010) 1215-1224.
[37] R. Pan, Q. Wang, D. Sun, P. He, Effects of electric field on interfacial microstructure and shear strength of diffusion bonded α-Al2O3/Ti joints, Journal of the European Ceramic Society, 35(1) (2015) 219-226.
[38] H. Conrad, Electroplasticity in metals and ceramics, Materials Science and Engineering: A, 287(2) (2000) 276-287.
[39] A. Niroumand‐Jadidi, S. Kashani‐Bozorg, Failure mechanisms of friction stir spot welds of AA6061‐T6/DP590 steel during tensile‐shear testing, Fatigue & Fracture of Engineering Materials & Structures, 42(10) (2019) 2247-2261.
[40] Y. Bozkurt, M.K. Bilici, Application of Taguchi approach to optimize of FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys, Materials & Design, 51 (2013) 513-521.
[41] A. Sakhaei, M. Kazemi Nasrabadi, A. Jalali Aghchai, A. Barimani-Varandi, Optimization of friction stir spot welding process parameters to achieve maximum failure load, Iranian Journal of Manufacturing Engineering, 5(1) (2018) 13-27 (in Persain).
[42] K. Chen, X. Liu, J. Ni, Keyhole refilled friction stir spot welding of aluminum alloy to advanced high strength steel, Journal of Materials Processing Technology, 249 (2017) 452-462.