تاثیر حفره در مولد گردابه مستطیلی شکل بر عملکرد حرارتی-هیدرودینامیکی مینی‌کانال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 دانشکده فنی مهندسی گرگان، دانشگاه گلستان، گرگان، ایران

3 مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

یکی از راهکارهای افزایش انتقال حرارت در مینی‌کانال‌ها اضافه‌نمودن مولدهای گردابه است؛ در این مقاله به بررسی عددی تاثیر حضور حفره در مولدهای گردابه، بر روی مولفه‌های انتقال حرارتی پرداخته شده‌است. مینی‌کانالی بطول 50 میلیمتر با یازده عدد مولد گردابه مستطیل شکل، دارای حفره‌هایی به حجم 5 تا 60 درصدِ حجم مولد گردابه، در محدود اعداد رینولدز 200-1000 و سیال پایه آب، تحت شار ثابت، مورد تحلیل قرارگرفته‌است. نتایج نشان می‌دهد، ایجاد حفره روی مولدهای گردابه افت فشار حاصل از وجود موانع در برابر جریان را کاهش داده و در عدد رینولدز 1000 بین مینیمم و ماکزیمم اندازه حفره می‌توان کاهش 34/7 درصدی افت فشار را مشاهده نمود. عدد ناسلت نیز، در ابتدا با ایجاد حفره روند افزایشی و سپس با افزایش اندازه آن بدلیل کوچک‌‎شدن گردابه در پشت موانع، روند نزولی داشته‌است؛ بطوریکه در ماکزیمم عدد رینولدز با افزایش اندازه حفره، کاهش 34/3 درصدی عدد ناسلت مشاهده شد. همچنین نتایج نشان داد که ماکزیمم معیار ارزیابی عملکرد برای عدد رینولدز 200، در نمونه 15VG- و با افزایش عدد رینولدز در نمونه‌هایی با حفره‌های کوچکتر بدست‌آمده، که در رینولدز 1000 ماکزیمم مقدار معیار ارزیابی عملکرد در نمونه 05VG- نشان داده‌شده‌است

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of hole on the rectangular vortex generator on thermal-hydrodynamic performance of the minichannel

نویسندگان [English]

  • Nadia Pahlevaninejad 1
  • Masoume Rahimi 2
  • Ali Akbar Ranjbar 3
  • majid gorzin 1
1 Department of Mechanical Engineering, Faculty of Mechanical Engineering, Babol Noshiravani University of Technology, Babol, Iran
2 Department of Mechanical Engineering, Faculty of Engineering, Golestan university, Gorgan, Iran
3 Department of Mechanical Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
چکیده [English]

There are several ways to increase heat transfer in mini-channels, like adding a vortex generator. In this paper, the effect of the presence of the hole on vortex generators on the heat transfer parameters is examined. In this study, a 50 mm long minichannel with eleven rectangular vortex generators, with holes with area of 5 to 60% of the vortex generator area, was analyzed with water-based fluid under constant flux in the range of Reynolds numbers 200-1000. The results showed the presence of holes on the vortex generators reduced the pressure drop resulting from the obstruction against the fluid flow and 34.7% decrease in pressure drop is observed for minimum and maximum area of holes in Reynolds number 1000. The Nusselt number is increased by existence of a hole in the Reynolds numbers range and then is decreased by increasing the size of the hole due to the reduction of the vortex size behind the obstacle, so that in the maximum Reynolds number by increasing hole size, 34.3% decrease is observed.

کلیدواژه‌ها [English]

  • heat transfer
  • Minichannel
  • Vortex generator
  • Hole
[1] A. Sabaghan, M. Edalatpour, M.C. Moghadam, E. Roohi, H. Niazmand, Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: two-phase numerical simulation, Applied Thermal Engineering, 100 (2016) 179-189.
[2] A. Ebrahimi, E. Roohi, S. Kheradmand, Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators, Applied Thermal Engineering, 78 (2015) 576-583.
[3] J.-F. Zhang, Y.K. Joshi, W.-Q. Tao, Single phase laminar flow and heat transfer characteristics of microgaps with longitudinal vortex generator array, International Journal of Heat and Mass Transfer, 111 (2017) 484-494.
[4] R. Wang, J. Wang, W. Yuan, Analysis and optimization of a microchannel heat sink with V-Ribs using nanofluids for micro solar cells, Micromachines, 10(9) (2019) 620.
[5] Z. Xu, Z. Han, J. Wang, Z. Liu, The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators, International Journal of Heat and Mass Transfer, 116 (2018) 61-72.
[6] B. Lotfi, B. Sundén, Q. Wang, An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators, Applied Energy, 162 (2016) 1282-1302.
[7] M. Samadifar, D. Toghraie, Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators, Applied Thermal Engineering, 133 (2018) 671-681.
[8] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques, Experimental Thermal and Fluid Science, 81 (2017) 21-32.
[9] A. Behnampour, O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, R. Mashayekhi, Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs, Physica E: Low-Dimensional Systems and Nanostructures, 91 (2017) 15-31.
[10] E. Hosseinirad, F. Hormozi, Influence of shape, number, and position of horizontal minifins on thermal-hydraulic performance of minichannel heat sink using nanofluid, Heat Transfer Engineering, 38(9) (2017) 892-903.
[11] M.T. Al-Asadi, A. Al-damook, M. Wilson, Assessment of vortex generator shapes and pin fin perforations for enhancing water-based heat sink performance, International Communications in Heat and Mass Transfer, 91 (2018) 1-10.
[12] R. Rezazadeh, N. Pourmahmoud, S. Asaadi, Numerical investigation and performance analyses of rectangular mini channel with different types of ribs and their arrangements, International Journal of Thermal Sciences, 132 (2018) 76-85.
[13] G.A. Sheikhzadeh, F.N. Barzoki, A.A.A. Arani, F. Pourfattah, Wings shape effect on behavior of hybrid nanofluid inside a channel having vortex generator, Heat and Mass Transfer, 55(7) (2019) 1969-1983.
[14] E. Hosseinirad, M. Khoshvaght-Aliabadi, F. Hormozi, Evaluation of heat transfer and pressure drop in a mini-channel using transverse rectangular vortex-generators with various non-uniform heights, Applied Thermal Engineering, 161 (2019) 114196.
[15] Y. Wang, B. Zhou, Z. Liu, Z. Tu, W. Liu, Numerical study and performance analyses of the mini-channel with discrete double-inclined ribs, International journal of heat and mass transfer, 78 (2014) 498-505.
[16] M.T. Al-Asadi, F.S. Alkasmoul, M.C. Wilson, Benefits of spanwise gaps in cylindrical vortex generators for conjugate heat transfer enhancement in micro-channels, Applied Thermal Engineering, 130 (2018) 571-586.
[17] R. Kamboj, S. Dhingra, G. Singh, CFD simulation of heat transfer enhancement by plain and curved winglet type vertex generators with punched holes, International Journal of Engineering Research and General Science, 2(4) (2014) 2091-2730.
[18] Z. Han, Z. Xu, J. Wang, Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole, International Journal of Heat and Mass Transfer, 126 (2018) 993-1001.
[19] G. Zhou, Z. Feng, Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes, International Journal of Thermal Sciences, 78 (2014) 26-35.
[20] K. Boukhadia, H. Ameur, D. Sahel, M. Bozit, Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger, International Journal of Thermal Sciences, 126 (2018) 172-180.
[21] D. Sahel, H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Applied Thermal Engineering, 101 (2016) 156-164.
[22] H. Ameur, Y. Menni, Laminar cooling of shear thinning fluids in horizontal and baffled tubes: Effect of perforation in baffles, Thermal Science and Engineering Progress, 14 (2019) 100430.
[23] H. Ameur, D. Sahel, Y. Menni, Numerical investigation of the performance of perforated baffles in a plate-fin heat exchanger, Thermal Science, (00) (2020) 90-90.
[24] G. Lu, G. Zhou, Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes, International Journal of Heat and Mass Transfer, 102 (2016) 679-690.
[25] S.E. Ghasemi, A.A. Ranjbar, S.M.J. Hoseini, Cooling performance analysis of water-cooled heat sinks with circular and rectangular minichannels using finite volume method, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(2) (2018) 231-239.
[26] X. Xie, W. Tao, Y. He, Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, (2007) 247-255.
[27] A. Tikadar, S.K. Oudah, T.C. Paul, A.S. Salman, A. Morshed, J.A. Khan, Parametric study on thermal and hydraulic characteristics of inter-connected parallel and counter flow mini-channel heat sink, Applied Thermal Engineering, 153 (2019) 15-28.
[28] M. Khoshvaght-Aliabadi, Z. Arani, F. Rahimpour, Influence of Al2O3–H2O nanofluid on performance of twisted minichannels, Advanced Powder Technology, 27(4) (2016) 1514-1525.
[29] X. Xie, Z. Liu, Y. He, W. Tao, Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Applied thermal engineering, 29(1) (2009) 64-74.
[30] A. Tikadar, T.C. Paul, S.K. Oudah, N.M. Abdulrazzaq, A.S. Salman, J.A. Khan, Enhancing thermal-hydraulic performance of counter flow mini-channel heat sinks utilizing secondary flow: Numerical study with experimental validation, International Communications in Heat and Mass Transfer, 111 (2020) 104447.
[31] W.M. Kays, A.L. London, Compact heat exchangers, (1984).
[32] M. Khoshvaght-Aliabadi, Z. Arani-Lahtari, Forced convection in twisted minichannel (TMC) with different cross section shapes: a numerical study, Applied Thermal Engineering, 93 (2016) 101-112.
[33] M. Khoshvaght-Aliabadi, M. Sahamiyan, Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS), Energy conversion and management, 108 (2016) 297-308.