[1] A. Sabaghan, M. Edalatpour, M.C. Moghadam, E. Roohi, H. Niazmand, Nanofluid flow and heat transfer in a microchannel with longitudinal vortex generators: two-phase numerical simulation, Applied Thermal Engineering, 100 (2016) 179-189.
[2] A. Ebrahimi, E. Roohi, S. Kheradmand, Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators, Applied Thermal Engineering, 78 (2015) 576-583.
[3] J.-F. Zhang, Y.K. Joshi, W.-Q. Tao, Single phase laminar flow and heat transfer characteristics of microgaps with longitudinal vortex generator array, International Journal of Heat and Mass Transfer, 111 (2017) 484-494.
[4] R. Wang, J. Wang, W. Yuan, Analysis and optimization of a microchannel heat sink with V-Ribs using nanofluids for micro solar cells, Micromachines, 10(9) (2019) 620.
[5] Z. Xu, Z. Han, J. Wang, Z. Liu, The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators, International Journal of Heat and Mass Transfer, 116 (2018) 61-72.
[6] B. Lotfi, B. Sundén, Q. Wang, An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators, Applied Energy, 162 (2016) 1282-1302.
[7] M. Samadifar, D. Toghraie, Numerical simulation of heat transfer enhancement in a plate-fin heat exchanger using a new type of vortex generators, Applied Thermal Engineering, 133 (2018) 671-681.
[8] J. Zhang, Y. Diao, Y. Zhao, Y. Zhang, An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques, Experimental Thermal and Fluid Science, 81 (2017) 21-32.
[9] A. Behnampour, O.A. Akbari, M.R. Safaei, M. Ghavami, A. Marzban, G.A.S. Shabani, R. Mashayekhi, Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs, Physica E: Low-Dimensional Systems and Nanostructures, 91 (2017) 15-31.
[10] E. Hosseinirad, F. Hormozi, Influence of shape, number, and position of horizontal minifins on thermal-hydraulic performance of minichannel heat sink using nanofluid, Heat Transfer Engineering, 38(9) (2017) 892-903.
[11] M.T. Al-Asadi, A. Al-damook, M. Wilson, Assessment of vortex generator shapes and pin fin perforations for enhancing water-based heat sink performance, International Communications in Heat and Mass Transfer, 91 (2018) 1-10.
[12] R. Rezazadeh, N. Pourmahmoud, S. Asaadi, Numerical investigation and performance analyses of rectangular mini channel with different types of ribs and their arrangements, International Journal of Thermal Sciences, 132 (2018) 76-85.
[13] G.A. Sheikhzadeh, F.N. Barzoki, A.A.A. Arani, F. Pourfattah, Wings shape effect on behavior of hybrid nanofluid inside a channel having vortex generator, Heat and Mass Transfer, 55(7) (2019) 1969-1983.
[14] E. Hosseinirad, M. Khoshvaght-Aliabadi, F. Hormozi, Evaluation of heat transfer and pressure drop in a mini-channel using transverse rectangular vortex-generators with various non-uniform heights, Applied Thermal Engineering, 161 (2019) 114196.
[15] Y. Wang, B. Zhou, Z. Liu, Z. Tu, W. Liu, Numerical study and performance analyses of the mini-channel with discrete double-inclined ribs, International journal of heat and mass transfer, 78 (2014) 498-505.
[16] M.T. Al-Asadi, F.S. Alkasmoul, M.C. Wilson, Benefits of spanwise gaps in cylindrical vortex generators for conjugate heat transfer enhancement in micro-channels, Applied Thermal Engineering, 130 (2018) 571-586.
[17] R. Kamboj, S. Dhingra, G. Singh, CFD simulation of heat transfer enhancement by plain and curved winglet type vertex generators with punched holes, International Journal of Engineering Research and General Science, 2(4) (2014) 2091-2730.
[18] Z. Han, Z. Xu, J. Wang, Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole, International Journal of Heat and Mass Transfer, 126 (2018) 993-1001.
[19] G. Zhou, Z. Feng, Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes, International Journal of Thermal Sciences, 78 (2014) 26-35.
[20] K. Boukhadia, H. Ameur, D. Sahel, M. Bozit, Effect of the perforation design on the fluid flow and heat transfer characteristics of a plate fin heat exchanger, International Journal of Thermal Sciences, 126 (2018) 172-180.
[21] D. Sahel, H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Applied Thermal Engineering, 101 (2016) 156-164.
[22] H. Ameur, Y. Menni, Laminar cooling of shear thinning fluids in horizontal and baffled tubes: Effect of perforation in baffles, Thermal Science and Engineering Progress, 14 (2019) 100430.
[23] H. Ameur, D. Sahel, Y. Menni, Numerical investigation of the performance of perforated baffles in a plate-fin heat exchanger, Thermal Science, (00) (2020) 90-90.
[24] G. Lu, G. Zhou, Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes, International Journal of Heat and Mass Transfer, 102 (2016) 679-690.
[25] S.E. Ghasemi, A.A. Ranjbar, S.M.J. Hoseini, Cooling performance analysis of water-cooled heat sinks with circular and rectangular minichannels using finite volume method, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(2) (2018) 231-239.
[26] X. Xie, W. Tao, Y. He, Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, (2007) 247-255.
[27] A. Tikadar, S.K. Oudah, T.C. Paul, A.S. Salman, A. Morshed, J.A. Khan, Parametric study on thermal and hydraulic characteristics of inter-connected parallel and counter flow mini-channel heat sink, Applied Thermal Engineering, 153 (2019) 15-28.
[28] M. Khoshvaght-Aliabadi, Z. Arani, F. Rahimpour, Influence of Al2O3–H2O nanofluid on performance of twisted minichannels, Advanced Powder Technology, 27(4) (2016) 1514-1525.
[29] X. Xie, Z. Liu, Y. He, W. Tao, Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink, Applied thermal engineering, 29(1) (2009) 64-74.
[30] A. Tikadar, T.C. Paul, S.K. Oudah, N.M. Abdulrazzaq, A.S. Salman, J.A. Khan, Enhancing thermal-hydraulic performance of counter flow mini-channel heat sinks utilizing secondary flow: Numerical study with experimental validation, International Communications in Heat and Mass Transfer, 111 (2020) 104447.
[31] W.M. Kays, A.L. London, Compact heat exchangers, (1984).
[32] M. Khoshvaght-Aliabadi, Z. Arani-Lahtari, Forced convection in twisted minichannel (TMC) with different cross section shapes: a numerical study, Applied Thermal Engineering, 93 (2016) 101-112.
[33] M. Khoshvaght-Aliabadi, M. Sahamiyan, Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS), Energy conversion and management, 108 (2016) 297-308.