[1] P. Albrecht, J. Appiarius, E. Cornell, D. Houghtaling, R. McCoy, E. Owen, D.J.I.t.o.e.c. Sharma, Assessment of the reliability of motors in utility applications, (3) (1987) 396-406.
[2] C.J. Crabtree, D. Zappalá, P.J. Tavner, Survey of commercially available condition monitoring systems for wind turbines, (2014).
[3] N.-H. Kim, D. An, J.-H. Choi, Prognostics and health management of engineering systems: An introduction, springer, 2016.
[4] M.S. Kan, A.C. Tan, J.J.M.S. Mathew, S. Processing, A review on prognostic techniques for non-stationary and non-linear rotating systems, 62 (2015) 1-20.
[5] C.J.I.-v.I.I.D.P. Monitoring, IO f. S, Diagnostics of machines-prognostics part 1: General guidelines, (2004) 14.
[6] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, J.J.M.S. Lin, S. Processing, Machinery health prognostics: A systematic review from data acquisition to RUL prediction, 104 (2018) 799-834.
[7] N. Gebraeel, J.J.I.T.o.R. Pan, Prognostic degradation models for computing and updating residual life distributions in a time-varying environment, 57(4) (2008) 539-550.
[8] G. Vachtsevanos, P. Wang, Fault prognosis using dynamic wavelet neural networks, in: 2001 IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology Conference.(Cat. No. 01CH37237), IEEE, 2001, pp. 857-870.
[9] Q. Cui, Z. Li, J. Yang, B. Liang, Rolling bearing fault prognosis using recurrent neural network, in: 2017 29th Chinese Control And Decision Conference (CCDC), IEEE, 2017, pp. 1196-1201.
[10] X. Chen, Z. Shen, Z. He, C. Sun, Z.J.P.o.t.I.o.M.E. Liu, Part C: Journal of Mechanical Engineering Science, Remaining life prognostics of rolling bearing based on relative features and multivariable support vector machine, 227(12) (2013) 2849-2860.
[11] A.R. Bastami, A. Aasi, H.A.J.I.J.o.S. Arghand, T.o.E.E. Technology, Estimation of remaining useful life of rolling element bearings using wavelet packet decomposition and artificial neural network, 43(1) (2019) 233-245.
[12] N. Gebraeel, M. Lawley, R. Liu, V.J.I.T.o.i.e. Parmeshwaran, Residual life predictions from vibration-based degradation signals: a neural network approach, 51(3) (2004) 694-700.
[13] S. Saon, T.J.C. Hiyama, M.w. Applications, Predicting remaining useful life of rotating machinery based artificial neural network, 60(4) (2010) 1078-1087.
[14] Z.J.J.o.I.M. Tian, An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring, 23(2) (2012) 227-237.
[15] M. Behzad, H.A. Arghand, A.R.J.C.M. Bastami, D.E. Management, Rolling Element Bearings Prognostics Using High-Frequency Spectrum of Offline Vibration Condition Monitoring Data, (2018) 276.
[16] M. Behzad, H.A. Arghand, A.J.P.o.t.I.o.M.E. Rohani Bastami, Part C: Journal of Mechanical Engineering Science, Remaining useful life prediction of ball-bearings based on high-frequency vibration features, 232(18) (2018) 3224-3234.
[17] R. Yang, J. Kang, J. Zhao, J. Li, H. Li, A case study of bearing condition monitoring using SPM, in: 2014 Prognostics and System Health Management Conference (PHM-2014 Hunan), IEEE, 2014, pp. 695-698.
[18] N. Tandon, K.J.N. Kumar, V. Worldwide, Detection of defects at different locations in ball bearings by vibration and shock pulse monitoring, 34(3) (2003) 9-16.
[19] N. Tandon, G. Yadava, a.K.J.M.s. Ramakrishna, s. processing, A comparison of some condition monitoring techniques for the detection of defect in induction motor ball bearings, 21(1) (2007) 244-256.
[20] R. Yang, J.J.V.P. Kang, Bearing fault detection of wind turbine using vibration and SPM, 10 (2016) 173-178.
[21] A.D. Mehdi Behzad, Hesam Addin Arghand, Using Shock Pulse Method for Early Fault Detection of Rolling Element Bearings and Comparing with Vibration Envelope Technique, Amirkabir J. Mech. Eng., (2019).
[22] T.J.A.S.I.W.P. Sundström, SPM Instruement AB, An introduction to the SPM HD method, (2010).