[1] M. Rushton, H. Jamshidifar, A. Khajepour, Multiaxis reaction system (MARS) for vibration control of planar cable-driven parallel robots, IEEE Transactions on Robotics, 35(4) (2019) 1039-1046.
[2] Z. Shao, T. Li, X. Tang, L. Tang, H. Deng, Research on the dynamic trajectory of spatial cable-suspended parallel manipulators with actuation redundancy, Mechatronics, 49 (2018) 26-35.
[3] L. Gagliardini, S. Caro, M. Gouttefarde, A. Girin, Discrete reconfiguration planning for cable-driven parallel robots, Mechanism and Machine Theory, 100 (2016) 313-337.
[4] G. Abbasnejad, J. Yoon, H. Lee, Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory, Mechanism and Machine Theory, 99 (2016) 1-18.
[5] W.B. Lim, S.H. Yeo, G. Yang, Optimization of tension distribution for cable-driven manipulators using tension-level index, IEEE/ASME Transactions on Mechatronics, 19(2) (2013) 676-683.
[6] J. Lamaury, M. Gouttefarde, A tension distribution method with improved computational efficiency, in: Cable-driven parallel robots, Springer, 2013, pp. 71-85.
[7] M.A. Khosravi, H.D. Taghirad, Robust PID control of fully-constrained cable driven parallel robots, Mechatronics, 24(2) (2014) 87-97.
[8] C. Gosselin, M. Grenier, On the determination of the force distribution in overconstrained cable-driven parallel mechanisms, Meccanica, 46(1) (2011) 3-15.
[9] R. Yao, X. Tang, J. Wang, P. Huang, Dimensional optimization design of the four-cable-driven parallel manipulator in fast, IEEE/ASME Transactions On Mechatronics, 15(6) (2009) 932-941.
[10] P.H. Borgstrom, B.L. Jordan, G.S. Sukhatme, M.A. Batalin, W.J. Kaiser, Rapid computation of optimally safe tension distributions for parallel cable-driven robots, IEEE Transactions on Robotics, 25(6) (2009) 1271-1281.
[11] R.S. Novin, A. Karimi, M. Yazdani, M. Tale Masouleh, Optimal motion planning for parallel robots via convex optimization and receding horizon, Advanced Robotics, 30(17-18) (2016) 1145-1163.
[12] Y. Jung, J. Bae, An asymmetric cable-driven mechanism for force control of exoskeleton systems, Mechatronics, 40 (2016) 41-50.
[13] P. Bosscher, A.T. Riechel, I. Ebert-Uphoff, Wrench-feasible workspace generation for cable-driven robots, IEEE Transactions on Robotics, 22(5) (2006) 890-902.
[14] S.-R. Oh, S.K. Agrawal, Cable suspended planar robots with redundant cables: Controllers with positive tensions, IEEE Transactions on Robotics, 21(3) (2005) 457-465.
[15] G. Barrette, C.m.M. Gosselin, Determination of the dynamic workspace of cable-driven planar parallel mechanisms, J. Mech. Des., 127(2) (2005) 242-248.
[16] T. Bruckmann, A. Pott, M. Hiller, Calculating force distributions for redundantly actuated tendon-based Stewart platforms, in: Advances in Robot Kinematics, Springer, 2006, pp. 403-412.
[17] M. Hassan, A. Khajepour, Optimization of actuator forces in cable-based parallel manipulators using convex analysis, IEEE Transactions on Robotics, 24(3) (2008) 736-740.
[18] Z. Cui, X. Tang, S. Hou, H. Sun, Research on controllable stiffness of redundant cable-driven parallel robots, IEEE/ASME Transactions on Mechatronics, 23(5) (2018) 2390-2401.
[19] A. Gonzalez-Rodriguez, F. Castillo-Garcia, E. Ottaviano, P. Rea, A. Gonzalez-Rodriguez, On the effects of the design of cable-Driven robots on kinematics and dynamics models accuracy, Mechatronics, 43 (2017) 18-27.
[20] T. Rasheed, P. Long, D. Marquez-Gamez, S. Caro, Tension distribution algorithm for planar mobile cable-driven parallel robots, in: Cable-Driven Parallel Robots, Springer, 2018, pp. 268-279.
[21] Z. Cui, X. Tang, S. Hou, H. Sun, Non-iterative geometric method for cable-tension optimization of cable-driven parallel robots with 2 redundant cables, Mechatronics, 59 (2019) 49-60.
[22] X. Geng, M. Li, Y. Liu, Y. Li, W. Zheng, Z. Li, Analytical tension-distribution computation for cable-driven parallel robots using hypersphere mapping algorithm, Mechanism and Machine Theory, 145 (2020) 103692.
[23] H.D. Taghirad, M.A. Nahon, Dynamic analysis of a macro–micro redundantly actuated parallel manipulator, Advanced Robotics, 22(9) (2008) 949-981.
[24] H.D. Taghirad, Y.B. Bedoustani, An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators, IEEE Transactions on Robotics, 27(6) (2011) 1137-1143.
[25] H.D. Taghirad, Parallel robots: mechanics and control, CRC press, 2013.
[26] H. Taghirad, A. Khalilpour, M. Aliyari, M. Tale Masouleh, Appling evolutionary algorithms in multi objective optimization of planar cable-driven parallel robots, Modares Mechanical Engineering, 14(5) (2014) 44-54.
[27] H.D. Taghirad, M. Nahon, Kinematic analysis of a macro–micro redundantly actuated parallel manipulator, Advanced Robotics, 22(6-7) (2008) 657-687.
[28] J.S. Arora, INTRODUCTION TO OPTIMUM DESIGN, EDITION, THIRD ed., 2012.
[29] A. Nasr, S.A. Moosavian, Multi-objective optimization design of spatial cable-driven parallel robot equipped with a serial manipulator, Modares Mechanical Engineering, 16(1) (2016) 29-40.
[30] M. Agahi, L. Notash, Redundancy resolution of wire-actuated parallel manipulators, Transactions of the Canadian Society for Mechanical Engineering, 33(4) (2009) 561-573.
[31] T.F. Coleman, Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM Journal on optimization, 6(2) (1996) 418-445.
[32] W.W. Hager, H. Zhang, A new active set algorithm for box constrained optimization, SIAM Journal on Optimization, 17(2) (2006) 526-557.