ترکیب سیستم‌های ترمز فعال و تعلیق نیمه‌فعال جهت بهبود پایداری چرخشی و غلتشی خودرو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی صنایع، مکانیک و هوافضا، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، بوئین زهرا، ایران.

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران.

چکیده

این مقاله، ترکیبی از سیستم‌های فعال شاسی جهت بهبود پایداری چرخشی و غلتشی خودرو با استفاده از سیستم‌های ترمز فعال و تعلیق نیمه‌فعال را ارائه می‌کند. سیستم ترمز فعال طراحی‌شده بر‌اساس کنترل مود لغزشی، احتمال واژگونی خودرو را با کاهش سرعت طولی و شتاب جانبی کاهش می‌دهد. همچنین، یک سیستم تعلیق نیمه‌فعال به روش کنترل فازی جهت بهبود پایداری غلتشی طراحی شده که اثر شتاب جانبی را بر زاویه غلت و سرعت آن کاهش می‌دهد. نرخ انتقال بار جانبی، به‌عنوان معیار واژگونی انتخاب می‌شود که بر‌پایه زاویه غلت و شتاب‌های عرضی و غلتشی می‌باشد. یک مدل دینامیکی خودرو در محیط نرم‌افزار آدامز ساخته می‌شود که شامل زیرسیستم‌های تعلیق عقب و جلو، ترمز و فرمان، مدل تایر و بدنه می‌باشد. ویژگی‌های غیر‌‌‌خطی تایرها، بوش‌ها، فنر‌ها و میراگرها نیز در این مدل لحاظ شده‌اند. بنابراین مدل، عملکرد دینامیکی خودرو را به‌طور دقیق بیان می‌کند. الگوریتم کنترلی تحت مانور‌های زاویه پله فرمان و تعویض مسیر با استفاده از شبیه‌سازی مشترک نرم‌افزار‌های آدامز و متلب ارزیابی می‌شود. نتایج شبیه‌سازی نشان می‌دهد که سیستم طراحی‌شده با کنترل‌کننده‌های ترکیبی در مقایسه با سیستم‌های جداگانه ترمز فعال و تعلیق نیمه‌فعال به‌خوبی می‌تواند پایداری چرخشی و جلوگیری از واژگونی خودرو را بهبود بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Combination of active braking and semi-active suspension systems to improve the roll and yaw vehicle stability

نویسندگان [English]

  • Abbas Soltani 1
  • Shahram Azadi 2
1 Assistant Professor, Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University, Buein Zahra, Iran.
2 Associate Professor, Department of Mechanical Engineering, K.N. Toosi University, Tehran, Iran.
چکیده [English]

This paper presents a combined use of active chassis systems to enhance vehicle roll and yaw stability using semi-active suspension and active braking systems. The designed active braking system based on sliding mode control reduces the probability of vehicle rollover by decreasing the longitudinal velocity and lateral acceleration. Also, a semi-active suspension is proposed through fuzzy control method to improve the vehicle roll stability, which attenuates the effect of lateral acceleration on roll angle and roll rate. The lateral load transfer ratio is selected as the rollover index based on roll angle and lateral and roll accelerations. A vehicle dynamics model is built in the ADAMS environment, which includes subsystems of steering, braking and front and rear suspension, tire model and body. Also, the nonlinear characteristics of tires, bushings, springs and dampers are considered in the model. So, it can accurately express the dynamics performance of the vehicle. The control algorithm is evaluated under step steer and lane change maneuvers utilizing MATLAB and ADAMS co-simulation. Simulation results show that the proposed system with combined controllers can effectively improve the vehicle yaw stability and the rollover prevention compared with the only active braking and semi-active suspension systems.

کلیدواژه‌ها [English]

  • Vehicle chassis control
  • Roll stability
  • Yaw stability
  • Co-simulation of software
  • ADAMS and MATLAB
[1] A.T. Van Zanten, R. Erhardt, K. Landesfeind, G. Pfaff, VDC systems development and perspective, SAE transactions, (1998) 424-444.
[2] X. Shen, F. Yu, Investigation on integrated vehicle chassis control based on vertical and lateral tyre behaviour correlativity, Vehicle System Dynamics, 44(sup1) (2006) 506-519.
[3] J. Zhang, J. Li, Integrated vehicle chassis control for active front steering and direct yaw moment control based on hierarchical structure, Transactions of the Institute of Measurement and Control, 41(9) (2019) 2428-2440.
[4] N. Ding, S. Taheri, An adaptive integrated algorithm for active front steering and direct yaw moment control based on direct Lyapunov method, Vehicle System Dynamics, 48(10) (2010) 1193-1213.
[5] C. Poussot-Vassal, O. Sename, L. Dugard, S.M. Savaresi, Vehicle dynamic stability improvements through gain-scheduled steering and braking control, Vehicle System Dynamics, 49(10) (2011) 1597-1621.
[6] A. Tavasoli, M. Naraghi, H. Shakeri, Optimized coordination of brakes and active steering for a 4WS passenger car, ISA transactions, 51(5) (2012) 573-583.
[7] S. Yim, K. Jeon, K. Yi, An investigation into vehicle rollover prevention by coordinated control of active anti-roll bar and electronic stability program, International Journal of Control, Automation and Systems, 10(2) (2012) 275-287.
[8] M. Doumiati, O. Sename, L. Dugard, J.-J. Martinez-Molina, P. Gaspar, Z. Szabo, Integrated vehicle dynamics control via coordination of active front steering and rear braking, European Journal of Control, 19(2) (2013) 121-143.
[9] P. Song, M. Tomizuka, C. Zong, A novel integrated chassis controller for full drive-by-wire vehicles, Vehicle System Dynamics, 53(2) (2015) 215-236.
[10] S. Yim, S. Kim, H. Yun, Coordinated control with electronic stability control and active front steering using the optimum yaw moment distribution under a lateral force constraint on the active front steering, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(5) (2016) 581-592.
[11] H. Her, E. Joa, K. Yi, K. Kim, Integrated chassis control for optimized tyre force coordination to enhance the limit handling performance, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 230(8) (2016) 1011-1026.
[12] A. Tavasoli, M. Naraghi, Interior‐point method to optimize tire force allocation in 4‐wheeled vehicles using high‐level sliding mode control with adaptive gain, Asian Journal of Control, 15(4) (2013) 1188-1200.
[13] S. Rahimi, M. Naraghi, Design of an integrated control system to enhance vehicle roll and lateral dynamics, Transactions of the Institute of Measurement and Control, 40(5) (2018) 1435-1446.
[14] P. Gáspár, J. Bokor, Z. Szabo, Active suspension in integrated vehicle control, INTECH Open Access Publisher, 2009.
[15] H. Xiao, W. Chen, H. Zhou, J.W. Zu, Integrated control of active suspension system and electronic stability programme using hierarchical control strategy: theory and experiment, Vehicle System Dynamics, 49(1-2) (2011) 381-397.
[16] S.-B. Lu, Y.-N. Li, S.-B. Choi, L. Zheng, M.-S. Seong, Integrated control on MR vehicle suspension system associated with braking and steering control, Vehicle System Dynamics, 49(1-2) (2011) 361-380.
[17] A. Soltani, A. Bagheri, S. Azadi, Integrated vehicle dynamics control using semi-active suspension and active braking systems, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 232(3) (2018) 314-329.
[18] M.A. Saeedi, A new robust combined control system for improving manoeuvrability, lateral stability and rollover prevention of a vehicle, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 234(1) (2020) 198-213.
[19] M. Ataei, A. Khajepour, S. Jeon, A general rollover index for tripped and un-tripped rollovers on flat and sloped roads, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile engineering, 233(2) (2019) 304-316.
[20] X. Qian, C. Wang, W. Zhao, Rollover prevention and path following control of integrated steering and braking systems, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(6) (2020) 1644-1659.
[21] S. Li, L. He, Co-simulation Study of Vehicle ESP System Based on ADAMS and MATLAB, JSW, 6(5) (2011) 866-872.
[22] F. Ying, G. Yiming, Z. Hongni, Control for vehicle handing stability based on ADAMS and Matlab, in:  2010 International Conference on Computer Application and System Modeling (ICCASM 2010), IEEE, 2010, pp. V8-546-V548-549.
[23] Z. Xiu-qin, Y. Bo, Y. Chao, X. Guan-neng, Research on ABS of multi-axle truck based on ADAMS/Car and Matlab/Simulink, Procedia Engineering, 37 (2012) 120-124.
[24] S. Azadi, M. Vaziri, M. Hoseini, Vehicle dynamic control of a passenger car applying flexible body model, Vehicle system dynamics, 48(5) (2010) 587-617.
[25] Z. Qi, S. Taheri, B. Wang, H. Yu, Estimation of the tyre–road maximum friction coefficient and slip slope based on a novel tyre model, Vehicle System Dynamics, 53(4) (2015) 506-525.
[26] A. Bagheri, S. Azadi, A. Soltani, A combined use of adaptive sliding mode control and unscented Kalman filter estimator to improve vehicle yaw stability, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 231(2) (2017) 388-401.
[27] M. Salem, A.A. Aly, Fuzzy control of a quarter-car suspension system, World Academy of Science, Engineering and Technology, 53(5) (2009) 258-263.
[28] B. Zhu, Q. Piao, J. Zhao, L. Guo, Integrated chassis control for vehicle rollover prevention with neural network time-to-rollover warning metrics, Advances in Mechanical Engineering, 8(2) (2016) 1687814016632679.