تحلیل اثر جذب بیومولکول فلاوین مونونوکلئوتید بر روی فرکانس طبیعی نانولوله های زیست سازگار برن- نیتریدی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی مکانیک، دانشکده ی فنی، دانشگاه مراغه، مراغه، ایران

چکیده

در این مطالعه، رفتار ارتعاشی و فرکانس طبیعی نانولوله برن– نیتریدی تک و دوجداره، تحت جذب فیزیکی بیومولکول‌های فلاوین‌مونونوکلئوتید با استفاده از شبیه‌سازی دینامیک مولکولی در دو محیط مختلف خلا و محیط آبی بررسی شده است. همچنین، تاثیر شرایط مرزی متفاوت و پارامترهای هندسی مانند شعاع و تعداد جداره‌ها بر فرکانس طبیعی مطالعه گردیده است. بر اساس نتایج بدست‌آمده، جذب فیزیکی این مولکول، فرکانس طبیعی نانولوله‌های برن- نیتریدی را کاهش می‌دهد که درمورد نانولوله‌های برن- نیتریدی با شرایط مرزی کاملا گیردار قابل توجه است. علاوه بر این، ملاحظه شد که تغییر فرکانسی نانولوله‌ی برن- نیتریدی با تکیه‌گاه گیردار- آزاد در محیط سیال آبی به دلیل تغییر شکل مود ناشی از نیروی خارجی وان‌دروالس، مثبت خواهد بود. همچنین، مشاهده شده است که تغییر فرکانس نانولوله‌های برن- نیتریدی تک جداره با نسبت ابعاد کوچکتر در مقایسه با نانولوله‌های برن- نیتریدی تک جداره با نسبت ابعاد بزرگتر و نانولوله‌های دو جداره، بیشتر است. مطالعه در محیط آبی نشان می‌دهد که تغییر فرکانس به طور قابل توجهی افزایش می‌یابد درحالی‌که شیب این تغییر نسبت به درصد وزنی مولکول کاهش می‌یابد. نتایج این مطالعه را می‌توان به عنوان یک مطالعه‌ی پایه‌ای در سیستم‌های نانوالکترومکانیکی مربوط به طراحی نانوبیوسنسورهای با کارآمدی بیشتر تشخیص مولکول‌ها در محیط‌های دارای سیال در نظر گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the effect of adsorption of Flavin Mononucleotide biomolecule on the natural frequency of biocompatible boron-nitride nanotubes

نویسنده [English]

  • Shahram Ajori
Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh
چکیده [English]

In this study, natural frequency of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin Mononucleotide molecules are investigated employing the molecular dynamics simulations in vacuum and aqueous environments. The effects of different boundary conditions and geometrical parameters on the natural frequency have been explored. According to the results, the physical adsorption of polymers reduces the natural frequency of boron-nitride nanotubes which is considerable in the case of boron-nitride nanotubes with fully clamped boundary conditions. Moreover, it has been observed that the frequency shift for clamped-free boundary condition in an aqueous environment due to change in mode-shape which is the result of van der Waals interaction with environment, is positive. Also, it is observed that frequency shift of single-walled boron-nitride nanotubes with smaller aspect ratios is higher than that of single-walled boron-nitride nanotubes with higher aspect ratios and double-walled boron-nitride nanotubes. Considering the aqueous environments, frequency shift considerably increases, whereas the slope of variation with the weight percentage decreases. The result of this study can be used as the benchmark for further studies in nanoelectromechanical systems to design more efficient molecular recognition nanobiosensors in aqueous environments.

کلیدواژه‌ها [English]

  • Boron-nitride nanotube
  • Physical adsorption
  • Flavin Mononucleotide
  • Natural frequency
  • Molecular dynamics simulations
[1] A. Rubio, J. L. Corkill, M. L. Cohen, Theory of graphitic boron nitride nanotubes, Physical Review B 49 (1994) 5081-5088.
[2] N.G. Chopra, R.L. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron-nitride nanotubes, Science 269 (1995) 966-967.
[3] R. Ansari, S. Ajori, Molecular dynamics study of the torsional vibration characteristics of boron-nitride nanotubes, Physics Letters A 378 (2014) 2876-2880.
[4] S. Ajori, R. Ansari, Torsional buckling behavior of boron-nitride nanotubes using molecular dynamics simulations, Current Applied Physics 14(8) (2014) 1072-1075.
[5] R. Arenal, X. Blase, A. Loiseau, Boron-Nitride and Boron Carbon Nitride Nanotubes: Synthesis, Characterization and Theory, Advances in Physics 59 (2010) 101-179.
[6] P. Ayala, R. Arenal, A. Loiseau, A. Rubio, T. Pichler, The Physical and Chemical Properties of HeteroNanotubes, Reviews of modern physics 82 (2010) 1843–1885.
[7] Y.K. Yap, B-C-N Nanotubes and Related Nanostructures, Springer Science & Business Media, Volume 6 (2009) 1-299.
[8] X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and Band Gap Constancy of Boron-Nitride Nanotubes, Europhysics Letters 28 (1994) 335–340.
[9] R. Ansari, S. Ajori, A molecular dynamics study on the vibration of carbon and boron nitride double-walled hybrid nanotubes, Applied Physics A 120 (2015) 1399-1406.
[10] M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon Nanotubes: Present and Future Commercial Applications, Science 339 (2013) 535-539.
[11] M. Terrones, Science and Technology of The Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes, Annual review of materials research, 33 (2003) 419-501.
[12] S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale 5 (2013) 1727-1752.
[13] W.H. Moon, H.J. Hwang, Molecular-dynamics simulation of structure and thermal behaviour of boron nitride nanotubes, Nanotechnology 15 (2004) 431-434.
 
[14] Q. Cheng, Y. Liu, G. Wang, H. Liu, M. Jin, and R. Li, Free vibration of a fluid-conveying nanotube constructed by carbon nanotube and boron nitride nanotube. Physica E: Low-dimensional Systems and Nanostructures, 109 (2019) 183-190.
 
[15] J. Zhang, and C. Wang, Beat vibration of hybrid boron nitride-carbon nanotubes–A new avenue to atomic-scale mass sensing. Computational Materials Science, 127 (2017) 270-276.
 
[16] T.D. Jorshari, M.A. Roudbari, D. Scerrato and A. Kouzani, Vibration suppression of a boron nitride nanotube under a moving nanoparticle using a classical optimal control procedure. Continuum Mechanics and Thermodynamics, 31(6) (2019) 1825-1842.
 
[17] H.M. Sedighi, and M. Malikan, Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment. Physica Scripta, 95(5) (2020) 055218.
[18] C.Y. Zhi, Y. Bando, C.C. Tang, Q. Huang, D. Golberg, Boron nitride nanotubes: functionalization and composites, Journal of Materials Chemistry 18 (2008) 3900–3908.
[19] X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with protein and cells, Journal of the American Chemical Society 131 (2009) 890–89.
[20] S. Ajori, R. Ansari, Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations, Physica B, 459 (2015) 58-61.
[21] R. Ansari, S. Ajori, A. Ameri, Elastic and structural properties and buckling behavior of single-walled carbon nanotubes under chemical adsorption of atomic oxygen and hydroxyl, Chemical Physics Letters 616-617 (2014) 120-125.
[22] S. Ajori, R. Ansari, and S. Haghighi, Small strain effect on the mechanical vibration behavior of cross-linked functionalized carbon nanotubes with polyethylene: A molecular-dynamics study, EPL (Europhysics Letters), 125(4) (2019) 43001.
[23] R. Ansari, S. Ajori, S. Rouhi, Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers’ Applied Surface Science, 332 (2015): 640-647.
[24] S. Ajori, R. Ansari, M. Darvizeh, Vibration characteristics of single- and double-walled carbon nanotubes functionalized with amide and amine groups, Physica B 462 (2015) 8.
[25] J. Zhu, J.D. Kim, H. Peng, J.L. Margrave, V.N. Khabashesku, E.V. Barrera, Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization, Nano Letters 3(8) (2003) 1107-1113.
[26] C.M. Chang, Y.L. Liu, Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites, Carbon 48(4) (2010) 1289-1297.
[27] J.M. Yuan, Z.F. Fan, X.H. Chen, X.H. Chen, Z.J. Wu, L.P. He, Preparation of polystyrene-multi walled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion, Polymer 50(14) (2009) 3285-3291.
[28] M. Ran, W. Sun, Y. Liu, W. Chu, C. Jiang, Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition, Journal of Solid State Chemistry 197 (2013) 517-522.
[29] I. Pełech, U. Narkiewicz, D. Moszynski, R. Pełech, Simultaneous purification and functionalization of carbonnanotubes using chlorination, Journal of Materials Research 27 (2012) 2368-2375.
[30] I.V. Lara, I. Zanella, S.B. Fagan, Functionalization of carbon nanotube by carboxyl group under radial deformation, Chemical Physics, 428 (2014) 117-120.
[31] H. Garate, A.D. Falco, M.S. Moreno, M.L. Fascio, S. Goyanes, N.B. D'Accorso, Influence of the electronic distribution of polymers in the spatial conformation of polymer grafted carbon nanotube composites, Physica B, 407(16) (2012) 3184-3187.
[32] F.L. Liu, P. Xiao, H.L. Fang, H.F. Dai, L. Qiao, Y.H. Zhang, Single-walled carbon nanotube-based biosensors for the detection of volatile organic compounds of lung cancer, Physica E 44(2) (2011) 367-372.
[33] K.K. Smith, N.D. Redeker, J.C. Rios, M.H. Mecklenburg, J.C. Marcischak, A.J. Guenthner, and K.B. Ghiassi, Surface Modification and Functionalization of Boron Nitride Nanotubes via Condensation with Saturated and Unsaturated Alcohols for High Performance Polymer Composites. ACS Applied Nano Materials, 2(7) (2019) 4053-4060.
[34] S.H. Kang, S.W. Jeon, S.Y. Moon, Y.J. Yoon, and T.H. Kim, Fabrication of Non-Covalently Functionalized Boron Nitride Nanotubes with High Stability and Water-Redispersibility. The Journal of Physical Chemistry Letters, 11 (2020) 4511–4516
[35] C.K. Maity, S. Sahoo, K. Verma, A.K. Behera, and G.C. Nayak, Facile functionalization of boron nitride (BN) for the development of high-performance asymmetric supercapacitors. New Journal of Chemistry, 44(19) (2020) 8106-8119.
[36] P. Panigrahi, A. Kumar, H. Bae, H. Lee, R.  Ahuja, and T. Hussain, Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium. Physical Chemistry Chemical Physics, 22(27) (2020) 15675-15682.
[37] S. Quiles-Díaz, Y. Martínez-Rubí, J. Guan, K.S. Kim, M. Couillard, H.J. Salavagione, M.A. Gómez-Fatou, and B. Simard, Enhanced thermal conductivity in polymer nanocomposites via covalent functionalization of boron nitride nanotubes with short polyethylene chains for heat-transfer applications. ACS Applied Nano Materials, 2(1) (2018) 440-451.
[38] X. Wu, W. An, X.C. Zeng, Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups, Journal of the American Chemical Society 128(36) (2006) 12001-12006.
[39] G. Gou, B. Pan, L. Shi, Noncovalent functionalization of BN nanotubes with perylene derivative molecules: an ab initio study, ACS Nano 4(3) (2010) 1313-1320
[40] Zh. Gao, Ch. Zhi, Y. Bando, D. Golberg, T. Serizawa, Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine, Nanobiomedicine, 1 (2014) 1-7.
[41] Z. Gao, C. Zhi, Y. Bando, D. Golberg, T. Serizawa, Noncovalent functionalization of disentangled boron nitride nanotubes with flavin mononucleotides for strong and stable visible-light emission in aqueous solution”.  ACS applied materials & Interfaces, 3 (2011) 627.
[42] S. Ajori, R. Ansari Khalkhali, and M. Darvizeh, The structural properties and vibrational behavior of physisorbed carbon nanotubes with flavin mononucleotide biomolecule in water using molecular dynamics simulation. Modares Mechanical Engineering, 16(1) (2016) 144-150 (in Persian).
[43] R. Ansari, S. Ajori, and A. Ameri, Stability characteristics and structural properties of single-and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations. Applied Surface Science, 366 (2016) 233-244.
[44] S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of computational physics, 117 (1995) 1-19.
[45] C. Grindon, S. Harris, T. Evans, K. Novik, P. Coveney, C. Laughton, Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362 (2004) 1373-1386.
[46] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M.Jr. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins and nucleic acids and organic molecules. Journal of the American Chemical Society, 117(19) (1995) 5179-5197.
[47] C.L. Zhang, H.S. Shen, Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation, Journal of Physics D: Applied Physics, 41 (2008) 055404.
[48] M.P. Allen, D.J. Tildesley, Computer Simulation of liquids, Oxford university press, 1986.
[49] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical review A 31 (1985) 1695-1697.
[50] R. Ansari, S. Ajori, and A. Ameri, On the vibrational characteristics of single-and double-walled carbon nanotubes containing ice nanotube in aqueous environment. Applied Physics A, 121(1) (2015) 223-232.