بهینه‌سازی سینماتیکی موتور استرلینگ براساس افزایش کار خروجی و با درنظرگرفتن فضای اشغالی موتور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک و مکاترونیک- دانشگاه صنعتی شاهرود

2 صنعتی شاهرود

3 دانشگاه صنعتی شاهرود

4 صنعتی شاهرود-مهندسی مکانیک

چکیده

موتور استرلینگ به دلیل برخی مزایا از جمله سروصدای کم، احتراق خارجی‌بودن و توانایی استفاده از انرژی خورشیدی و دیگر انرژی های نوین، توجه پژوهشگران را در سال‌های اخیر به خود جلب نموده‌است. همچنین این موتورها در کاربردهایی با اختلاف دمای کم و یا زیاد قابل استفاده هستند. بدیهی است نوع سیلندرهای مورد استفاده، نحوه چیدمان آن‌ها و مکانیزم منتقل‌کننده حرکت می‌تواند بر روی عملکرد این موتور تاثیرگذار باشد. از سویی مهندسان و طراحان همواره به دنبال افزایش راندمان و کارایی در سیستم‌های مکانیکی هستند که در موتورها می‌تواند منجر به افزایش کار و یا توان خروجی موتور شود. در این مطالعه، در ابتدا به تحلیل ابعادی انواع مختلف موتور استرلینگ پرداخته می‌شود. سپس با تعریف پارامترهای هندسی موتور به عنوان متغیرهای طراحی، کار خروجی موتور با استفاده از روش‌های بهینه‌سازی بیشینه خواهد شد. همچنین، برای جلوگیری از افزایش ابعاد موتور و فضای اشغالی آن، از روابط قیدی در مساله استفاده خواهدشد. بهینه‌سازی سینماتیکی بر روی چهار نوع مختلف از موتور استرلینگ اعمال می‌شود. برای حل مساله از سه روش بهینه‌سازی الگوریتم ژنتیک، الگوریتم ازدحام ذرات و الگوریتم رقابت استعماری استفاده شده‌است. نتایج بهینه‌سازی سینماتیکی نشان می‌دهد کار خروجی موتور با ابعاد بهینه، حدودا 1/45 تا 4/59 برابر شده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Kinematic Optimization of the Stirling engine for Maximum Output Work and Constraint of Occupied Space

نویسندگان [English]

  • Abbas Rahmati 1
  • Seyed Mojtaba Varedi Kulaee 2
  • Habib Ahmadi 3
  • Mohmmad Hossein Ahmadi 4
1 Shahrood University of Technology
3 Shahrood University of Technology
4 Shahrood University of Technology
چکیده [English]

The Stirling engine has attracted researchers' attention in recent years due to some advantages such as low noise, external combustion, and the ability to use solar and other new energy sources. Moreover, these engines can also be used in applications with low or high-temperature differences. The type of cylinders, their arrangement, and the transmission mechanism can affect this engine's performance. On the other hand, engineers and designers are always looking to increase the efficiency and effectiveness of mechanical systems, which in engines can lead to increasing the engine's work or power. In the current study, firstly, the dimensional analysis of different types of Stirling engines is done. Then, by defining the engine's geometric parameters as the design variables, the engine's output work will be maximized using optimization algorithms. Also, in order to prevent the increase of the dimensions of the engine and its occupied space, a new constraint in the problem will be used. Kinematic optimization is applied to four different types of Stirling engines. Three algorithms, namely genetic algorithm, particle swarm optimization, and imperialistic competition algorithm, have been used to solve the optimization problem. The results of kinematic optimization show that the output work of the engine with optimal dimensions has increased approximately 1.45 to 4.59 times.

کلیدواژه‌ها [English]

  • Stirling engine
  • Kinematic
  • Thermodynamic
  • Optimization algorithms
  • Output work
[1] M.H. Ahmadi, H. Hosseinzade, H. Sayyaadi, A.H. Mohammadi, F. Kimiaghalam, Application of the multi-objective optimization method for designing a powered Stirling heat engine: design with maximized power, thermal efficiency and minimized pressure loss, Renewable Energy, 60 (2013) 313-322.
[2] M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis, Energy Conversion and Management, 76 (2013) 561-570.
[3] M.H. Ahmadi, A.H. Mohammadi, S. Dehghani, M.A. Barranco-Jimenez, Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm, Energy conversion and Management, 75 (2013) 438-445.
[4] G. Walker, Stirling engines,  (1980).
[5] T. Finkelstein, Air engines: the history, science, and reality of the perfect engine/Theodor Finkelstein, Allan J, Organ,  (2001).
[6] G. Schmidt, The theory of Lehmann's calorimetric machine, Zeitschrift Des Vereines Deutscher Ingenieure, 15(1) (1871) 98-112.
[7] I. Urieli, D.M. Berchowitz, Stirling cycle engine analysis, A. Hilger Bristol, UK, 1984.
[8] M. Babaelahi, H. Sayyaadi, Simple-II: a new numerical thermal model for predicting thermal performance of Stirling engines, Energy, 69 (2014) 873-890.
[9] C. Cheng, Y. Chen, Numerical simulation of thermofluid dynamics of a 1-kW beta-type Stirling engine”, in:  The 9th International Conference on Advanced Computational Engineering and Experimenting (ACEX2015), June 29 to July 2, 2015, Munich, Germany, 2005.
[10] J.L. Salazar, W.-L. Chen, A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine, Energy conversion and management, 88 (2014) 177-188.
[11] C.-H. Cheng, Y.-J. Yu, Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models, Renewable energy, 36(2) (2011) 714-725.
[12] C.-H. Cheng, Y.-J. Yu, Combining dynamic and thermodynamic models for dynamic simulation of a beta-type Stirling engine with rhombic-drive mechanism, Renewable energy, 37(1) (2012) 161-173.
[13] L. Scollo, P. Valdez, S. Santamarina, M. Chini, J. Baron, Twin cylinder alpha stirling engine combined model and prototype redesign, International journal of hydrogen energy, 38(4) (2013) 1988-1996.
[14] M. Afzali Ashkezari, Dynamic analysis of a v-type slider-crank mechanism in Stirling engine, Tarbiat Modares University, Iran, 2014 (in Persian).
[15] S. Toghyani, A. Kasaeian, S.H. Hashemabadi, M. Salimi, Multi-objective optimization of GPU3 Stirling engine using third order analysis, Energy Conversion and Management, 87 (2014) 521-529.
[16] C. Duan, X. Wang, S. Shu, C. Jing, H. Chang, Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm, Energy Conversion and Management, 84 (2014) 88-96.
[17] G. Xiao, U. Sultan, M. Ni, H. Peng, X. Zhou, S. Wang, Z. Luo, Design optimization with computational fluid dynamic analysis of β-type Stirling engine, Applied Thermal Engineering, 113 (2017) 87-102.
[18] J. Egas, D.M. Clucas, Stirling engine configuration selection, Energies, 11(3) (2018) 584.
[19] A. Rahmati, S. Varedi-Koulaei, M. Ahmadi, H. Ahmadi, Dimensional synthesis of the Stirling engine based on optimizing the output work by evolutionary algorithms, Energy Reports, 6 (2020) 1468-1486.
[20] H. Hachem, R. Gheith, F. Aloui, S.B. Nasrallah, Technological challenges and optimization efforts of the Stirling machine: A review, Energy conversion and management, 171 (2018) 1365-1387.
[21] D. Thombare, S. Verma, Technological development in the Stirling cycle engines, Renewable and Sustainable Energy Reviews, 12(1) (2008) 1-38.
[22] S.S. Rao, Engineering optimization: theory and practice, John Wiley & Sons, 2019.
[23] A. Sardashti, H. Daniali, S. Varedi, Optimal free-defect synthesis of four-bar linkage with joint clearance using PSO algorithm, Meccanica, 48(7) (2013) 1681-1693.
[24] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, in:  2007 IEEE congress on evolutionary computation, Ieee, 2007, pp. 4661-4667.