بررسی فرآیند تولید هیدروژن به روش اکسیداسیون جزئی گاز طبیعی در یک مبدل غیرکاتالیستی بزرگ و مقایسه آن با فرآیند رفورمینگ متان در مبدل کاتالیستی کوچک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی سیستم‌های انرژی، دانشکده علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران،

2 دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران مرکز، تهران، ایران،

3 دانشکدۀ علوم و فنون دریایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

4 دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد نوشهر، نوشهر، ایران

چکیده

در قسمت اول تحقیق مبدل گاز طبیعی غیرکاتالیستی به روش عددی تحلیل می‌گردد. معادله‌های حاکم شامل معادله بقای جرم، اجزا با مدل احتراقی، اتلاف‌های گردابی با استفاده از مکانیزم GRI - 1.2، اندازه حرکت و بقای انرژی با مدل آشفتگی رینولدز است. نتایج قسمت اول نشان می‌دهد که افزایش فشار، تبدیل متان به هیدروژن را افزایش می‌دهد اما از فشار 3 مگا پاسکال به بالا تولید هیدروژن تقریباً ثابت می‌ماند. همچنین اگر نسبت اکسیژن به گاز طبیعی تا 66/0 افزایش یابد، دما افزایش یافته و غلظت متان در گاز خروجی کاهش و از طرفی هیدروژن تولیدی افزایش می‌یابد. بعلاوه با افزایش نسبت بخارآب به گاز طبیعی، دما در مبدل کاهش یافته و نسبت هیدروژن به مونوکسید کربن در خروجی افزایش می‌یابد. سپس برای رفع چالش نقطه داغ در این مبدل‌ها، رفورمینگ بخار متان بررسی شد. از معادله‌های بقای جرم، برینکمن، انتقال اجزا و انرژی برای مبدل کاتالیستی چند لوله‌ای استفاده شد. اثر دمای ورودی لوله‌های گرم‌کننده در مبدل کاتالیستی، نسبت متان به بخارآب و همچنین پیکربندی لوله‌ها مورد بررسی قرار گرفت. نتایج نشان می‌دهد که با افزایش دمای ورودی لوله‌های گرم‌کننده، نسبت متان به بخارآب به حدود 0/25 می‌رسد و رفورمینگ افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of hydrogen production process by partial oxidation of natural gas in a large non-catalytic reformer and comparison with methane steam reforming process in a small catalytic reformer

نویسندگان [English]

  • Seyed Behzad Haghi 1
  • Gholamreza Salehi 2
  • Masoud Torabi Azad 3
  • Ali lohrasbi Nichkouhi 4
1 1Department of Energy system engineering, Islamic Azad University, North Tehran Branch, Tehran, Iran
2 Department of Mechanical engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran
3 , Faculty of Marine Science and Technology, Islamic Azad University, North Tehran Branch, Tehran, Iran
4 Department of Mechanical engineering, Islamic Azad University, Nowshahr Branch, Nowshahr, Iran
چکیده [English]

In the first part of the research, non-catalytic natural gas reformer is investigated numerically. The governing equations include the mass equation, the species equation with eddy dissipation concept modeling using GRI-1.2 mechanism, the momentum and energy equation with Reynolds-averaged Navier–Stokes turbulence model. The results show that increasing the pressure promotes conversion of CH4 into hydrogen, but from pressure 3 MPa and above, hydrogen production remains almost constant. Also, if the ratio of oxygen to natural gas increases to 0.66, the temperature increases and the concentration of CH4 in the exhaust gas decreases In addition, as the ratio of water vapor to natural gas increases, the temperature in the reformer decreases and the H2/CO (synthetic gas) ratio in the output increases. In the next section, methane steam reforming is examined to overcome the hot spot problem in these reformers. The mass, Brinkman, component and energy transport equation are used for the multi-tube catalytic reformer. The effects of inlet temperature of heating tubes, CH4/H2O ratio and configuration of heating tubes have been investigated. The results show that increasing the inlet temperature of the heating tubes, the CH4/H2O ratio up to 0.25 and the number of heating tubes, increase methane reforming.

کلیدواژه‌ها [English]

  • Natural gas reformer
  • Hydrogen
  • numerical method
  • Partial oxidation
  • Porous media
[1] R. Moradi, K.M. Groth, Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, International Journal of Hydrogen Energy, 44(23) (2019) 12254-12269.
[2] C. Antonini, K. Treyer, A. Streb, M. van der Spek, C. Bauer, M. Mazzotti, Hydrogen production from natural gas and biomethane with carbon capture and storage–A techno-environmental analysis, Sustainable Energy & Fuels, (2020).
[3] C. Jaggai, Z. Imkaraaz, K. Samm, A. Pounder, N. Koylass, D.P. Chakrabarti, M. Guo, K. Ward, Towards greater sustainable development within current Mega-Methanol (MM) production, Green Chemistry, 22(13) (2020) 4279-4294.
[4] B. Lemke, C. Roodhouse, N. Glumac, H. Krier, Hydrogen synthesis via combustion of fuel-rich natural gas/air mixtures at elevated pressure, International journal of hydrogen energy, 30(8) (2005) 893-902.
[5] G. Diglio, D.P. Hanak, P. Bareschino, F. Pepe, F. Montagnaro, V. Manovic, Modelling of sorption-enhanced steam methane reforming in a fixed bed reactor network integrated with fuel cell, Applied Energy, 210 (2018) 1-15.
[6] D. Pashchenko, Effect of the geometric dimensionality of computational domain on the results of CFD-modeling of steam methane reforming, International Journal of Hydrogen Energy, 43(18) (2018) 8662-8673.
[7] G. Sabeeh, S. Palanki, N.D. Sylvester, M.Y. El-Sharkh, Modeling and Analysis of a Hydrogen Reformer for Fuel Cell Applications, Heat Transfer Engineering, (2018).
[8] W. Guo, Y. Wu, L. Dong, C. Chen, F. Wang, Simulation of non-catalytic partial oxidation and scale-up of natural gas reformer, Fuel processing technology, 98 (2012) 45-50.
[9] X. Zhou, C. Chen, F. Wang, Modeling of non-catalytic partial oxidation of natural gas under conditions found in industrial reformers, Chemical Engineering and Processing: Process Intensification, 49(1) (2010) 59-64.
[10] G. Franchi, M. Capocelli, M. De Falco, V. Piemonte, D. Barba, Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies, Membranes, 10(1) (2020) 10.
[11] E. Kosa, Dynamic and steady-state analysis of steam reforming of methane to hydrogen in a reformer for electric-powered unmanned aerial vehicle, International Journal of Low-Carbon Technologies, (2020).
[12] W.H. Chen, C.Y. Chen, Water gas shift reaction for hydrogen production and carbon dioxide capture: A review, Applied Energy, 258 (2020) 114078.
[13] P. Ebrahimi, A. Kumar, M. Khraisheh, A review of recent advances in water-gas shift catalysis for hydrogen production, Emergent Materials, (2020) 1-37.
[14] A.M. Amin, E. Croiset, W. Epling, Review of methane catalytic cracking for hydrogen production, International Journal of Hydrogen Energy, 36(4) (2011) 2904-2935.
[15] C. Herce, C. Cortés, S. Stendardo, Computationally efficient CFD model for scale-up of bubbling fluidized bed reactors applied to sorption-enhanced steam methane reforming, Fuel Processing Technology, 167 (2017) 747-761.
[16] T.q. Zhang, B. Choi, Y.B. Kim, Numerical and experimental study on hydrogen production via dimethyl ether steam reforming, International Journal of Hydrogen Energy, (2020).
[17] H. Wang, D.W. Blaylock, A.H. Dam, S.E. Liland, K.R. Rout, Y.A. Zhu, W.H. Green, A. Holmen, D. Chen, Steam methane reforming on a Ni-based bimetallic catalyst: density functional theory and experimental studies of the catalytic consequence of surface alloying of Ni with Ag, Catalysis Science & Technology, 7(8) (2017) 1713-1725.
[18] Y. Yoon, H. Kim, J. Lee, Enhanced catalytic behavior of Ni alloys in steam methane reforming, Journal of Power Sources, 359 (2017) 450-457.
[19] J. Chen, L. Yan, W. Song, D. Xu, Methane steam reforming thermally coupled with catalytic combustion in catalytic microreactors for hydrogen production, International Journal of Hydrogen Energy, 42(1) (2017) 664-680.
[20] V. Velisala, N.S. Golagani, Computational Fluid Dynamics Study of Serpentine Flow Field Proton Exchange Membrane Fuel Cell Performance, Heat Transfer Engineering, (2019).
[21] P. Ferreira‐Aparicio, M. Benito, J. Sanz, New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers, Catalysis Reviews, 47(4) (2005) 491-588.
[22] J.M. Ogden, Review of small stationary reformers for hydrogen production, Report to the international energy agency, 609 (2001).
[23] K. Kawashima, T. Kagawa, T. Fujita, Instantaneous flow rate measurement of ideal gases, J. Dyn. Sys, Meas. Control, 122(1) (2000) 174-178.
[24] U. Manual, ANSYS FLUENT 12.0, 2009.
[25] H. Butcher, C.J. Quenzel, L. Breziner, J. Mettes, B.A. Wilhite, P. Bossard, Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming, International journal of hydrogen energy, 39(31) (2014) 18046-18057.
[26] P. Gateau, Design of Reactors and Heat Exchange Systems to Optimize a Fuel Cell Reformer, in: Proceedings of the COMSOL User’s Conference Grenoble, 2007.
[27] T. Jiwanuruk, S. Putivisutisak, P. Ponpesh, P. Bumroongsakulsawat, T. Tagawa, H. Yamada, S. Assabumrungrat, Effect of flow arrangement on micro membrane reforming for H2 production from methane, Chemical Engineering Journal, 293 (2016) 319-326.
[28] M. Mundhwa, C.P. Thurgood, Numerical study of methane steam reforming and methane combustion over the segmented and continuously coated layers of catalysts in a plate reactor, Fuel Processing Technology, 158 (2017) 57-72.
[29] M. Nerat, Đ. Juričić, A comprehensive 3-D modeling of a single planar solid oxide fuel cell, International Journal of Hydrogen Energy, 41(5) (2016) 3613-3627.
[30] V. Palma, M. Miccio, A. Ricca, E. Meloni, P. Ciambelli, Monolithic catalysts for methane steam reforming intensification: Experimental and numerical investigations, Fuel, 138 (2014) 80-90.
[31] J. Xu, G.F. Froment, Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics, AIChE journal, 35(1) (1989) 88-96.
[32] H. Amirshaghaghi, A. Zamaniyan, H. Ebrahimi, M. Zarkesh, Numerical simulation of methane partial oxidation in the burner and combustion chamber of autothermal reformer, Applied Mathematical Modelling, 34(9) (2010) 2312-2322.
[33] V. Barrio, G. Schaub, M. Rohde, S. Rabe, F. Vogel, J. Cambra, P. Arias, M. Güemez, Reactor modeling to simulate catalytic partial oxidation and steam reforming of methane. Comparison of temperature profiles and strategies for hot spot minimization, International journal of hydrogen energy, 32(10-11) (2007) 1421-1428.