[1] T. Furukawa, M. Tanino, H. Morikawa, M. ENDO, Effects of composition and processing factors on the mechanical properties of as-hot-rolled dual-phase steels, Transactions of the Iron and Steel Institute of Japan 24 (1984) 113-121.
[2] N. Fonstein, Automotive Steels: Design, Metallurgy, Processing and Applications explores, 7-Dual-phase steels, (2017) 169-216.
[3] A. Ramazani, K. Mukherjee, U. Prahl, and W. Bleck, Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels, Comput. Mater. Sci, 52(1) (2012) 46–54.
[4] C. Thomser and W. Bleck, Modelling of the mechanical properties of Dual Phase steels based on microstructure, Shaker Verlag GmbH, (2009).
[5] S. A. Asgari, P. D. Hodgson, C. Yang, and B. F. Rolfe, Modeling of advanced high strength steels with the realistic microstructure–strength relationships, Comput. Mater. Sci, 45(4) (2009) 860–866.
[6] A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, and W. Bleck, Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach, Mater. Sci. Eng. A, 560 (2013) 129-139.
[7] S. H. Xia and J. T. Wang, A micromechanical model of toughening behavior in the dual-phase composite, Int. J. Plast, 26(10) (2010) 1442-1460.
[8] H. Lim, M. G. Lee, J. H. Kim, B. L. Adams, and R. H. Wagoner, Simulation of polycrystal deformation with grain and grain boundary effects, Int. J. Plast, 27( 9) (2011) 1328-1354.
[9] S. K. Paul, Micromechanics based modeling of Dual Phase steels: Prediction of ductility and failure modes, Comput. Mater. Sci, 56 (2012) 34-42.
[10] J. H. Kim, M.-G. Lee, D. Kim, D. K. Matlock, and R. H. Wagoner, Hole-expansion formability of dual-phase steels using representative volume element approach with boundary-smoothing technique, Mater. Sci. Eng. A, 527(27) (2010) 7353-7363.
[11] X. Sun, K. S. Choi, W. N. Liu, and M. A. Khaleel, Predicting failure modes and ductility of dual phase steels using plastic strain localization, Int. J. Plast., 25(10) (2009) 1888-1909.
[12] V. Tvergaard, Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., 17(4) (1981) 389-407.
[13] Y. Huang and A. J. Kinloch, Modelling of the toughening mechanisms in rubber-modified epoxy polymers, J. Mater. Sci., 27(10) (1992) 2753-2762.
[14] M. Danielsson, D. M. Parks, and M. C. Boyce, Three-dimensional micromechanical modeling of voided polymeric materials, J. Mech. Phys. Solids, 50(2) (2002) 351-379.
[15] F. M. Al-Abbasi and J. A. Nemes, Micromechanical modeling of dual phase steels, Int. J. Mech. Sci., 45(9) (2003) 1449-1465.
[16]T. Iung and M. Grange, Mechanical behaviour of two-phase materials investigated by the finite element method: necessity of three-dimensional modeling, Mater. Sci. Eng. A, 201(1–2) (1995) L8-L11.
[17] J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels, Acta Mater., 59(11) (2011) 4387-4394.
[18] V. Uthaisangsuk and W. Bleck, Microstructure based formability modelling of multiphase steels, Shaker Verlag, (2009).
[19] M. R. Ayatollahi, A. C. Darabi, H. R. Chamani, and J. Kadkhodapour, 3D Micromechanical Modeling of Failure and Damage Evolution in Dual Phase Steel Based on a Real 2D Microstructure, Acta Mech. Solida Sin., 29(1) (2016) 95-110.
[20] A. C. Darabi, H. R. Chamani, J. Kadkhodapour, A. P. Anaraki, A. Alaie, and M. R. Ayatollahi, Micromechanical analysis of two heat-treated dual phase steels: DP800 and DP980, Mech. Mater., 110 (2017) 68-83.
[21] M. Basaran and D. Weichert, Stress state dependent damage modeling with a focus on the lode angle influence, no. RWTH-CONV-142999. Lehrstuhl und Institut für Allgemeine Mechanik, (2011).
[22] R.O. Davis and A.P.S. Selvadurai. Plasticity and Geomechanics. Cambridge Univ Pr, (2002).
[23] L. Xue, Ductile fracture modeling - theory, experimental investigation and numerical Verycation, PhD thesis, Massachusetts Institute of Technology, (2007).
[24] X. Gao, G. Zhang, and C. Roe, A study on the effect of the stress state on ductile fracture. Int. J. Damage Mech., 19(1) (2010) 75.
[25] W.F. Chen, D.J. Han, and DJ Han. Plasticity for Structural Engineers. J Ross Pub, (2007).
[26] N.S. Ottosen and M. Ristinmaa. The Mechanics of Constitutive Modeling. Elsevier Science Ltd, (2005).
[27] M. Yu. Generalized Plasticity. Springer Verlag, (2006).
[28] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and lode dependence. Int. J. Plast. 24 (2008) 1071-1096.
[29] Y. Bai, T. Wierzbicki, Application of extended Mohr–Coulomb criterion to ductile fracture, International Journal of Fracture 161 (2010) 1-2.
[30] R.-M. Rodriguez, I. Gutiérrez, Unified Formulation to Predict the Tensile Curves of Steels with Different Microstructures, Mater. Sci. Forum 426-432 (2003) 4525-4530.
[31] V. Uthaisangsuk, S. Muenstermann, U. Prahl, W. Bleck, H.-P. Schmitz, T. Pretorius, A study of micro crack formation in multiphase steel using representative volume element and damage mechanics, Computational Materials Science 50 (2011) 225-1232.
[32] V. Kouznetsova, V, Computational homogenization for the multi-scale analysis of multi-phase materials, Thesis: Eindhoven University of Technology, The Netherlands (2002).
[33] A. Ch. Darabi, V. Guski, A. Butz, J. Kadkhodapour, S. Schmauder, A comparative study on mechanical behavior and damage scenario of DP600 and DP980 steels, Mechanics of Materials 143 (2020).
[34] R. Hill, Elastic properties of reinforced solids: some theoretical principles, J. Mech. Phys. Solids, 11 (1963) 357-372.
[35] Y. Zhao, X. Lia, W. Zhanga, R.D.K Misra, Z, Liua, Strain Partitioning and Softening Mechanisms of δ/γ in Lean Duplex Stainless Steels during Hot Deformation, Steel Research International 91 (2019).