استفاده از چاه انرژی غیرخطی، برای بهبود رفتار دینامیکی ورق مستطیلی تحت جریان آیرودینامیکی مافوق صوت با زوایای مختلف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 صنعتی شاهرود، مهندسی مکانیک

چکیده

در این مقاله، اثر چاه انرژی غیرخطی بر رفتار دینامیکی ورق الاستیک چهارسرلولای مستطیلی در زوایای آزیموس مختلف مورد تحقیق قرار گرفته است. ورق مورد نظر یک ورق مستطیلی نازک است که چاه انرژی غیرخطی به آن متصل شده و جریان هوای مافوق‌صوت از روی آن عبور می‌کند. هدف تحقیق، بهبود رفتار دینامیکی ورق با تغییر پارامترهای مکانی چاه انرژی غیرخطی می‌باشد. برای بدست‌آوردن معادلات ورق از تئوری ورق کلاسیک و برای درنظرگرفتن اثر غیرخطی‌ هندسی از روابط کرنش-جابجایی ون-کارمن استفاده می‌شود. مدل‌سازی جریان آیرودینامیکی برای جریان مافوق صوت بر پایه‌ی "تئوری شبه پایای پیستون مرتبه اول" صورت پذیرفت. برای چاه انرژی غیرخطی نیز از مدل کلوین-ویت استفاده شده است. معادلات از روش لاگرانژ استخراج و سپس با روش رایلی-ریتز گسسته‌سازی شده و با استفاده از روش رانگ-کوتای مرتبه چهار نیز حل شده است. به منظور بررسی اثرات چاه انرژی غیرخطی، دیاگرام‌های تاریخچه زمانی، فضای فازی، مقطع پوانکاره و نمودار چندشاخه‌گی مورد استفاده قرار گرفته است. نتایج نشان می‌دهد که با استفاده از چاه انرژی غیرخطی، رفتار دینامیکی ورق را که در برخی حالات بسیار پیچیده است می‌توان به رفتار ساده‌تری تغییر داد و بهبود بخشید. در برخی حالت‌ها، نصب چاه انرژی غیرخطی در نزدیکی میانه ورق مناسب نیست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using nonlinear energy sink to improve the dynamic behavior of rectangular plate under supersonic aerodynamic flow at different angles

نویسندگان [English]

  • Hasan Asadigorgi 1
  • ardeshir karami mohammadi 2
1 Department of Mechanical Engineering, Shahrood University of Technology
2
چکیده [English]

In this paper, the effect of nonlinear energy sink on the dynamic behavior of a rectangular simply supported elastic plate at different azimuth angles is investigated. The plate under study is a thin rectangular plate to which a non-linear energy sink is connected and the supersonic flow of air passes over it. The research aims to improve the behavior of the plate by changing the spatial parameters of the nonlinear energy sink. Classical plate theory is used to obtain plate equations, and von Karman strain-displacement relations are used to consider the nonlinear geometric effect. Modeling of supersonic aerodynamic flow will be based on first-order piston theory. The Kelvin-Voigt model is also used for non-linear energy sinks. The equations were extracted from Lagrange's method and then discretized by Rayleigh-Ritz method and solved by fourth-order Runge-Kutta method. In order to investigate the effects of nonlinear energy sink, the time history curves, phase portraits, Poincaré maps and bifurcation diagrams are used. The results show that using nonlinear energy sinks, the behavior of the plates, which in some cases is very complex, can be changed to a simpler behavior. In some cases, using a non-linear energy sink near the center of the plate is not appropriate.

کلیدواژه‌ها [English]

  • Supersonic flow
  • Azimuth angle
  • Nonlinear energy sink
  • Dynamic behavior
  • Bifurcation diagram
[1] E.H. Dowell, Nonlinear oscillations of a fluttering plate, AIAA journal, 4(7) (1966) 1267-1275.
[2] E.H. Dowell, Nonlinear oscillations of a fluttering plate. II, AIAA journal, 5(10) (1967) 1856-1862.
[3] C. Ventres, E. Dowell, Comparison of theory and experiment for nonlinear flutter of loaded plates, AIAA Journal, 8(11) (1970) 2022-2030.
[4] E.H. Dowell, Panel flutter-A review of the aeroelastic stability of plates and shells, AIAA journal, 8(3) (1970) 385-399.
[5] KARIAPPA, B. Somashekar, C. Shah, Discrete element approach to flutter of skew panels with in-plane forces under yawed supersonic flow, AIAA Journal, 8(11) (1970) 2017-2022.
[6] P. Shyprykevich, J.W. Sawyer, Flutter of Orthotropic Panels at Arbitrary Yaw Angles-Experiment and Theory, Journal of Aircraft, 11(1) (1974) 15-20.
[7] J.W. Sawyer, Flutter of elastically supported orthotropic panels including the effects of flow angle,  (1974).
[8] K. Abdel-Motaglay, R. Chen, C. Mei, Nonlinear flutter of composite panels under yawed supersonic flow using finite elements, AIAA journal, 37(9) (1999) 1025-1032.
[9] M.S. Azzouz, A. Przekop, X. Guo, C. Mei, Nonlinear flutter of shallow shell under yawed supersonic flow using FEM, in:  44 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2003.
[10] K. Abdel-Motagaly, X. Guo, B. Duan, C. Mei, Active control of nonlinear panel flutter under yawed supersonic flow, AIAA journal, 43(3) (2005) 671-680.
[11] M.R.F. M. Farrokh, Determination of the Flutter Instability Boundary of a Composite Wing Using Support Vector Machine, Amirkabir J. Mech. Eng, 50(4) (2018) 1-3.(in Persian)
[12] M. Azzouz, Flow angle effects on supersonic flutter of clamped curved panels, in:  50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, 2009, pp. 2595.
[13] S.M. Hasheminejad, M.A. Motaaleghi, Aeroelastic analysis and active flutter suppression of an electro-rheological sandwich cylindrical panel under yawed supersonic flow, Aerospace Science and Technology, 42 (2015) 118-127.
[14] N. Grover, D. Maiti, B. Singh, Flutter characteristics of laminated composite plates subjected to yawed supersonic flow using inverse hyperbolic shear deformation theory, Journal of Aerospace Engineering, 29(2) (2016) 04015038.
[15] M. Hosseini, A.G. Arani, M.R. Karamizadeh, H. Afshari, S. Niknejad, Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow, Wind and Structures, 29(6) (2019) 457-469.
[16] M.H. Majidi, M. Azadi, H. Fahham, Effect of CNT reinforcements on the flutter boundaries of cantilever trapezoidal plates under yawed supersonic fluid flow, Mechanics Based Design of Structures and Machines,  (2020) 1-21.
[17] H.-l. Guo, Y.-s. Chen, T.-z. Yang, Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink, Applied Mathematics and Mechanics, 34(10) (2013) 1277-1290.
[18] Y. Bichiou, M.R. Hajj, A.H. Nayfeh, Effectiveness of a nonlinear energy sink in the control of an aeroelastic system, Nonlinear Dynamics, 86(4) (2016) 2161-2177.
[19] H. Guo, S. Cao, T. Yang, Y. Chen, Aeroelastic suppression of an airfoil with control surface using nonlinear energy sink, Nonlinear Dynamics, 94(2) (2018) 857-872.
[20] C. Fernandez-Escudero, M. Gagnon, E. Laurendeau, S. Prothin, A. Ross, G. Michon, Experimental and Numerical Aeroelastic Analysis of Airfoil-Aileron System with Nonlinear Energy Sink, in:  Nonlinear Structures and Systems, Volume 1, Springer, 2020, pp. 133-135.
[21] B. Pidaparthi, S. Missoum, Stochastic optimization of nonlinear energy sinks for the mitigation of limit cycle oscillations, AIAA journal, 57(5) (2019) 2134-2144.
[22] M. Taleshi, M. Dardel, M.H. Pashaie, Passive targeted energy transfer in the steady state dynamics of a nonlinear plate with nonlinear absorber, Chaos, Solitons & Fractals, 92 (2016) 56-72.
[23] Y.-W. Zhang, H. Zhang, S. Hou, K.-F. Xu, L.-Q. Chen, Vibration suppression of composite laminated plate with nonlinear energy sink, Acta Astronautica, 123 (2016) 109-115.
[24] H.-Y. Chen, X.-Y. Mao, H. Ding, L.-Q. Chen, Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks, Mechanical Systems and Signal Processing, 135 (2020) 106383.
[25] J. Aghayari, p. safarpour, A. Rahi, s. bab, Optimal Reduction of the Vibration of the Flexible-Shaft-Disk-Blades System Using a Set of Nonlinear Energy Sinks on the Disk, Amirkabir Journal of Mechanical Engineering, 52(12) (2019) 71-80. (in Persian)
[26] A.K.M. H. Asadigorji, Passive Control of Flutter in Rectangular Plate in Supersonic Flow with an Attached Local Nonlinera Energy Sink, in:  7th International Conference on Acoustics & Vibration (ISAV2017)), Sharif University of Technol-ogy, Iran, 2017.
[27] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, 2003.
[28] E. Dowell, Aeroelasticity of Wings and Shells, Liyden: Noordhoff International Publishing Company,  (1975) 1-9.
[29] Y.M. Haddad, Viscoelasticity of engineering materials, Chapman & Hall, 2-6 Boundary Row, London, SE 1 8 HN, UK, 1995. 378,  (1995).
[30] S.S. Rao, Vibration of continuous systems, Wiley Online Library, 2007.
[31] H. AsadiGorgi, M. Dardel, M.H. Pashaei, Effects of all-over part-through cracks on the aeroelastic characteristics of rectangular panels, Applied Mathematical Modelling, 39(23-24) (2015) 7513-7536.
[32] N.E. Wierschem, J. Luo, M. Al-Shudeifat, S. Hubbard, R. Ott, L.A. Fahnestock, D.D. Quinn, D.M. McFarland, B. Spencer Jr, A. Vakakis, Simulation and testing of a 6-story structure incorporating a coupled two mass nonlinear energy sink, in:  International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2012, pp. 1301-1308.