[1] J.N. Dastgerdi, B. Anbarlooie, A. Miettinen, H. Hosseini-Toudeshky, H. Remes, Effects of particle clustering on the plastic deformation and damage initiation of particulate reinforced composite utilizing X-ray CT data and finite element modeling, Composites Part B: Engineering, 153 (2018) 57-69.
[2] K. Conlon, D. Wilkinson, Effect of particle distribution on deformation and damage of two-phase alloys, Materials Science and Engineering: A, 317(1-2) (2001) 108-114.
[3] S.-J. Hong, H.-M. Kim, D. Huh, C. Suryanarayana, B.S. Chun, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Materials Science and Engineering: A, 347(1-2) (2003) 198-204.
[4] J.N. Dastgerdi, G. Marquis, B. Anbarlooie, S. Sankaranarayanan, M. Gupta, Microstructure-sensitive investigation on the plastic deformation and damage initiation of amorphous particles reinforced composites, Composite Structures, 142 (2016) 130-139.
[5] M. Shakoor, M. Bernacki, P.-O. Bouchard, Ductile fracture of a metal matrix composite studied using 3D numerical modeling of void nucleation and coalescence, Engineering Fracture Mechanics, 189 (2018) 110-132.
[6] F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling, Handbook of peridynamic modeling, CRC press, 2016.
[7] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48(1) (2000) 175-209.
[8] Z. Liu, Y. Bie, Z. Cui, X. Cui, Ordinary state-based peridynamics for nonlinear hardening plastic materials' deformation and its fracture process, Engineering Fracture Mechanics, 223 (2020) 106782.
[9] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, Journal of Elasticity, 88(2) (2007) 151-184.
[10] B. Anbarlooie, H. Hosseini-Toudeshky, Peridynamic micromechanical prediction of nonlocal damage initiation and propagation in DP steels based on real microstructure, International Journal of Mechanical Sciences, 153-154 (2019) 64-74.
[11] M. Ahmadi, H. Hosseini-Toudeshky, M. Sadighi, Peridynamic micromechanical modeling of plastic deformation and progressive damage prediction in dual-phase materials, Engineering Fracture Mechanics, 235(C) (2020).
[12] E. Madenci, E. Oterkus, Peridynamic theory and its applications, Springer, 2014.
[13] E. Madenci, S. Oterkus, Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening, Journal of the Mechanics and Physics of Solids, 86 (2016) 192-219.
[14] M. Handbook, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 713 (1990).
[15] N. Bansal, Handbook of Ceramic Composites; Bansal, NP, Ed, in, Kluwer: Boston, MA, USA, 2005.
[16] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers & structures, 83(17-18) (2005) 1526-1535.
[17] ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, in, ASTM International, West Conshohocken, PA, 2016.
[18] J. Kadkhodapour, B. Anbarlooie, H. Hosseini-Toudeshky, S. Schmauder, Simulation of shear failure in dual phase steels using localization criteria and experimental observation, Computational materials science, 94 (2014) 106-113.
[19] A.I.C.B.o.L. Metals, Alloys, Standard Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-alloy Products (metric), ASTM International, 2010.
[20] Q. Wu, W. Xu, L. Zhang, Microstructure-based modelling of fracture of particulate reinforced metal matrix composites, Composites Part B: Engineering, 163 (2019) 384-392.