[1] A.C. Kruyt, Potential and uncertainty of wind energy in the Swiss Alps, EPFL, 2019.
[2] B. Blocken, 50 years of computational wind engineering: past, present and future, Journal of Wind Engineering and Industrial Aerodynamics, 129 (2014) 69-102.
[3] K. Murthy, O. Rahi, A comprehensive review of wind resource assessment, Renewable and Sustainable Energy Reviews, 72 (2017) 1320-1342.
[4] B. Blocken, A. van der Hout, J. Dekker, O. Weiler, CFD simulation of wind flow over natural complex terrain: case study with validation by field measurements for Ria de Ferrol, Galicia, Spain, Journal of Wind Engineering and Industrial Aerodynamics, 147 (2015) 43-57.
[5] B. Conan, A. Chaudhari, S. Aubrun, J. van Beeck, J. Hämäläinen, A. Hellsten, Experimental and numerical modelling of flow over complex terrain: the Bolund hill, Boundary-layer meteorology, 158(2) (2016) 183-208.
[6] L. Li, P. Chan, Numerical simulation study of the effect of buildings and complex terrain on the low-level winds at an airport in typhoon situation, Meteorologische Zeitschrift, 21(2) (2012) 183.
[7] J. Smargorinsky, General circulation experiment with the primitive equations, Monthly Weather Review, 91(3) (1963) 99-164.
[8] T. Uchida, Y. Ohya, Numerical simulation of atmospheric flow over complex terrain, Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3) (1999) 283-293.
[9] T. Uchida, Y. Ohya, Large-eddy simulation of turbulent airflow over complex terrain, Journal of wind engineering and industrial aerodynamics, 91(1-2) (2003) 219-229.
[10] O. Temel, L. Bricteux, J. van Beeck, Coupled WRF-OpenFOAM study of wind flow over complex terrain, Journal of Wind Engineering and Industrial Aerodynamics, 174 (2018) 152-169.
[11] I. Staffell, S. Pfenninger, Using bias-corrected reanalysis to simulate current and future wind power output, Energy, 114 (2016) 1224-1239.
[12] S. Jafari, T. Sommer, N. Chokani, R.S. Abhari, Wind resource assessment using a mesoscale model: the effect of horizontal resolution, in: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2012, pp. 987-995.
[13] B. Kruyt, J. Dujardin, M. Lehning, Improvement of wind power assessment in complex terrain: the case of COSMO-1 in the Swiss Alps, Frontiers in Energy Research, 6 (2018) 102.
[14] B. Pickering, C.M. Grams, S. Pfenninger, Sub-national variability of wind power generation in complex terrain and its correlation with large-scale meteorology, Environmental Research Letters, 15(4) (2020) 044025.
[15] L.J. Wicker, W.C. Skamarock, Time-splitting methods for elastic models using forward time schemes, Monthly weather review, 130(8) (2002) 2088-2097.
[16] P.A. Jiménez, J. Dudhia, On the ability of the WRF model to reproduce the surface wind direction over complex terrain, Journal of Applied Meteorology and Climatology, 52(7) (2013) 1610-1617.
[17] P.A. Jiménez, J. Dudhia, J.F. González‐Rouco, J. Montávez, E. García‐Bustamante, J. Navarro, J. Vilà‐Guerau de Arellano, A. Muñoz‐Roldán, An evaluation of WRF's ability to reproduce the surface wind over complex terrain based on typical circulation patterns, Journal of Geophysical Research: Atmospheres, 118(14) (2013) 7651-7669.
[18] P.A. Jiménez, J.F. González-Rouco, E. García-Bustamante, J. Navarro, J.P. Montávez, J.V.-G. De Arellano, J. Dudhia, A. Muñoz-Roldan, Surface wind regionalization over complex terrain: Evaluation and analysis of a high-resolution WRF simulation, Journal of Applied Meteorology and Climatology, 49(2) (2010) 268-287.
[19] P.A. Jiménez, J.F. González-Rouco, J.P. Montávez, E. García-Bustamante, J. Navarro, J. Dudhia, Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation, Climate dynamics, 40(7-8) (2013) 1643-1656.
[20] E.A. Aligo, W.A. Gallus, M. Segal, On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts, Weather and forecasting, 24(2) (2009) 575-594.
[21] R. Borge, V. Alexandrov, J.J. Del Vas, J. Lumbreras, E. Rodríguez, A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula, Atmospheric Environment, 42(37) (2008) 8560-8574.
[22] M.O. Mughal, M. Lynch, F. Yu, B. McGann, F. Jeanneret, J. Sutton, Wind modelling, validation and sensitivity study using Weather Research and Forecasting model in complex terrain, Environmental Modelling & Software, 90 (2017) 107-125.
[23] B. Sandeepan, V.G. Panchang, S. Nayak, K.K. Kumar, J.M. Kaihatu, Performance of the WRF model for surface wind prediction around Qatar, Journal of Atmospheric and Oceanic Technology, 35(3) (2018) 575-592.
[24] G. Kirkil, J. Mirocha, E. Bou-Zeid, F.K. Chow, B. Kosović, Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF, Monthly Weather Review, 140(1) (2012) 266-284.
[25] J. Mirocha, J. Lundquist, B. Kosović, Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF model, Monthly Weather Review, 138(11) (2010) 4212-4228.
[26] C. Moeng, J. Dudhia, J. Klemp, P. Sullivan, Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model, Monthly weather review, 135(6) (2007) 2295-2311.
[27] D. Muñoz-Esparza, B. Kosović, J. Mirocha, J. van Beeck, Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models, Boundary-layer meteorology, 153(3) (2014) 409-440.
[28] D. Muñoz-Esparza, B. Kosović, J. Van Beeck, J. Mirocha, A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers, Physics of Fluids, 27(3) (2015) 035102.
[29] W.C. Skamarock, Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., … Huang, X. -yu., A Description of the Advanced Research WRF Model Version 4 2019.
[30] Y. Liu, T. Warner, Y. Liu, C. Vincent, W. Wu, B. Mahoney, S. Swerdlin, K. Parks, J. Boehnert, Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications, Journal of Wind Engineering and Industrial Aerodynamics, 99(4) (2011) 308-319.
[31] R.K. Rai, L.K. Berg, M. Pekour, W.J. Shaw, B. Kosovic, J.D. Mirocha, B.L. Ennis, Spatiotemporal variability of turbulence kinetic energy budgets in the convective boundary layer over both simple and complex terrain, Journal of Applied Meteorology and Climatology, 56(12) (2017) 3285-3302.
[32] C. Talbot, E. Bou-Zeid, J. Smith, Nested mesoscale large-eddy simulations with WRF: Performance in real test cases, Journal of Hydrometeorology, 13(5) (2012) 1421-1441.
[33] F.K. Chow, C. Schär, N. Ban, K.A. Lundquist, L. Schlemmer, X. Shi, Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain, Atmosphere, 10(5) (2019) 274.
[34] C. Hald, M. Zeeman, P. Laux, M. Mauder, H. Kunstmann, Large-eddy simulations of real-world episodes in complex terrain based on era-reanalysis and validated by ground-based remote sensing data, Monthly Weather Review, 147(12) (2019) 4325-4343.
[35] M.H. Daniels, K.A. Lundquist, J.D. Mirocha, D.J. Wiersema, F.K. Chow, A new vertical grid nesting capability in the Weather Research and Forecasting (WRF) Model, Monthly Weather Review, 144(10) (2016) 3725-3747.
[36] F. Gerber, V. Sharma, Running COSMO-WRF on very-high resolution over complex terrain (2018), Laboratory of Cryospheric Sciences CRYOS, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland, doi: 10.16904/envidat. 35, Cite along with: Gerber, F., N. Besic, V. Sharma, R. Mott, M. Daniels, M. Gabella, A. Berne, U. Germann, and M. Lehning (2018): Spatial variability of snow precipitation and accumulation in COSMO-WRF simulations and radar estimations over complex terrain, The Cryosphere, submitted, (2018) 1-20.
[37] T.T. Warner, Numerical weather and climate prediction, cambridge university press, 2010.
[38] N. Pineda, O. Jorba, J. Jorge, J. Baldasano, Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: application to a mesoscale meteorological model, International journal of remote sensing, 25(1) (2004) 129-143.
[39] P.A. Jiménez, J. Dudhia, Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model, Journal of Applied Meteorology and Climatology, 51(2) (2012) 300-316.
[40] F. Ngan, H. Kim, P. Lee, K. Al-Wali, B. Dornblaser, A study of nocturnal surface wind speed overprediction by the WRF-ARW model in southeastern Texas, Journal of applied meteorology and climatology, 52(12) (2013) 2638-2653.
[41] L. van Veen, The Perdigão field campaign: evaluation of the Cell Perturbation Method in atmospheric simulations, University of Twente, 2018.