[1] C.K. Law, Multicomponent Droplet Combustion, Combustion Physics, New York: Cambridge University Press (2006).
[2] J. Warnatz, U. Maas, R.W. Dibble, Combustion, Heidelberg: Springer (2006).
[3]J. Conti, et al. International energy Outlook 2016 with projections to 2040, Washington DC, USA (2016).
[S1]
[4] K. M. Kundu , D. Banerjee, D. Bhaduri, On flame stabilization by bluff- bodies, Journal of Engineering for Power, 102 (1980) 209-214.
[5] H. K. Ma, J. S. Harn, The jet mixing effect on reaction flow in a bluff-body burner, International journal of heat and mass transfer, 37(18) (1994) 2957-2967.
[6] R.W. Schefer, M. Namazian, J. Kelly, M. Perrin, Effect of confinement on bluff-body burner recirculation zone characteristics and flame stability, Combustion science and technology, 120(1-6) (1996) 185-211.
[7] I. Esquiva-Dano, H. T. Nguyen, D. Escudie, Influence of a bluff-body’s shape on the stabilization regime of non-premixed flames, Combustion and Flame, 127(4) (2001) 2167-2180.
[8] L.K. Sze, C. S. Cheung, C.W. Leung, Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports, International Journal of heat and mass transfer, 47(14-16) (2004) 3119-3129.
[9] A. Sobiesiak, J.C. Wenzell, Characteristics and Structure of Inverse Flames of Natural Gas, Proceedings of the Combustion Institute, 30(1) (2005) 743-749.
[10] P. Hariharan, C. Periasamy, S.R. Gollahalli, Effect of Elliptic Burner Geometry and Air Equivalence Ratio on the nitric Oxide Emissions from Turbulent Hydrogen Flames, International Journal of Hydrogen Energy, 32 (8) (2007) 1095-1102.
[11] P. Kumar, D. Mishra, Effects of bluff-body shape on LPG–H 2 jet diffusion flame, International Journal of Hydrogen Energy, 33(10) (2008) 2578-2585.
[12] H. S. Zhen, C. W. Leung, C. S. Cheung, Thermal and Emission Characteristics of A Turbulent Swirling Inverse Diffusion Flame, International Journal of Heat and Mass Transfer, 53(5-6) (2010) 902-909.
[13] D. Ashoke, S. Acharya, Parametric study of upstream flame propagation in hydrogen-enriched premixed combustion: Effects of swirl, geometry and premixedness, International journal of hydrogen energy, 37(19) (2012) 14649-14668.
[14] S.A. Hashemi, N. Hajialigol, K. Mazaheri, and A. Fattahi, Investigation of the effect of the flame holder geometry on the flame structure in non-premixed hydrogen-hydrocarbon composite fuel combustion, Combustion, Explosion, and Shock Waves, 50(1) (2014) 32-41.
[15] M.M. Noor, A. P. Wandel, T. Yusaf., Analysis of recirculation zone and ignition position of non-premixed bluff-body for biogas MILD combustion, International Journal of Automotive and Mechanical Engineering, 8(1) (2013) 1176-1186.
[16] Z. Wang, et al., LES investigation of swirl intensity effect on unconfined turbulent swirling premixed flame, Chinese science bulletin 59 (33) (2014) 4550-4558.
[17] T. Yiheng, et al., Experimental Investigation on the Influences of Bluff-Body’s Position on Diffusion Flame Structures, ASME Power Conference (2017) POWER-ICOPE2017-3090.
[18] T. Yiheng,
et al., Effects of the position of a bluff-body on the diffusion flames: A combined experimental and numerical study, Applied Thermal Engineering 131 (2018) 507-521.
[S2]
[19] S. F. Mousavi Kolousforoushi , J. Mahmoudimehr, Influence of Burner Head Design on Its Thermal and Environmental Characteristics, AUT J. Mech. Eng., 2(1) (2018) 27-38.
[20] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge (2000).
[21] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, Edwards Press (2005).
[22] A.Bahari, K. Atashkari, J. Mahmoudimehr, Multi-objective optimization of a municipal solid waste gasifier, Biomass Conversion and Biorefinery, (2020) 1-16.
[23] ANSYSFluent User's Guide, ANSYS, Inc. (2016).
[24] A. Karl, J. Chi Hung Fung, An improved SST k− ω model for pollutant dispersion simulations within an isothermal boundary layer, Journal of Wind Engineering and Industrial Aerodynamics, 179 (2018) 369-384.
[25] H. Sheikhani, H. Ajam, M. Ghazikhani, A review of flame radiation research from the perspective of factors affecting the flame radiation, measurement and modeling, The European Physical Journal Plus, 135(4) (2020) 343.
[26] F. Kulacki, Handbook of Thermal Science and Engineering, Springer, (2018).
[27] D. Poitou, M. El-Hafi, B. Cuenot, Analysis of Radiation Modeling for Turbulent Combustion: Development of a Methodology to Couple Turbulent Combustion and Radiative Heat Transfer in LES, Journal of Heat Transfer, American Society of Mechanical Engineers, 133(6) (2011) 062701.
[28] M. Rasouli, J. Mahmoudimehr, Minimization of the Emission of Pollutants along with Maximization of Radiation from An Air-Staged Natural Gas Flame, Modares Mechanical Engineering 16 (7) (2016) 207-218 (in Persian).