بررسی انتشار موج در نانوبیوفیلترهای معماری‌شده فراکتالی مثلث‌های مرکز جرم ثابت مبتنی بر میکروتوبول‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

2 دانشگاه تهران*مهندسی مکانیک

چکیده

میکروتوبول‌ها، لوله‌های پلیمری متصل‌شده از هسته به غشا سلول، اصلی‌ترین بخش اسکلت سلولی هستند که سفتی مکانیکی، سازماندهی و حفظ شکل را برای سیتوپلاسم سلول‌های یوکاریوت فراهم می‌کنند. این ساختارها نقش اساسی در برخی فرآیندهای سلولی مانند تقسیم سلولی، انتقال درون سلولی و سازماندهی داخلی سلول‌ها ایفا می‌کنند. در کاربردهای ذکرشده، ساختار شبکه‌ای میکروتوبول‌ها دلیل اصلی اهمیت مطالعات عمیق‌تر خواص مکانیکی آنها هستند. در این مقاله به بررسی انتشار امواج الاستیک در شبکه‌های پریودیک مبتنی بر میکروتوبول‌های فراکتالی مثلث‌های مرکز جرم ثابت جهت تجزیه و تحلیل خصوصیات دینامیکی آنها پرداخته شده‌است. این مطالعه با انتخاب یک مدل تیر مناسب برای یک میکروتوبول آغاز می‌شود و با ایجاد ساختارهای پریودیک از میکروتوبول‌ها رفتار دینامیکی آنها مورد بررسی قرار می‌گیرد. برای بدست‌آوردن منحنی های انتشار موج، مدل‌های المان محدود برای میکروتوبول‌ها و شبکه‌های آنها به وجود آمده‌اند و معادلات گاف فونونی بر اساس تئوری بلاخ محاسبه می‌شوند. نتایج نشان می‌دهد بسته به توپولوژی سلول‌های واحد انتخاب‌شده و همچنین دوره‌های درنظرگرفته‌شده، امکان طراحی گاف فرکانسی در محدوده‌های خاص برای کاربرد فیلتر زیستی با فرکانس پایین و بالا وجود دارد. این مطالعه به محققان کمک می‌کند برخی از ارتعاشات ناخواسته را با استفاده از ساختارهای پریودیک معماری شده کنترل یا جذب کنند و به لطف زیست‌سازگاری بیشتر، می‌توان این شبکه‌ها را در ابزارهای نانوبیومکانیکی نسل بعدی مانند حسگرهای زیستی قابل کاشت استفاده‌کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of wave propagation in architected uniform triangle mass center fractal nano-bio-filters based on microtubules

نویسندگان [English]

  • Hamid Jafari 1
  • Mohammad Reza Hayeri Yazdi 2
  • Mir Masoud Seyyed Fakhrabadi 1
1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 University of Tehran
چکیده [English]

Microtubules, polymer tubes stretched from the cell nucleus to the cell membrane, are the major parts of the cytoskeleton that provide the mechanical rigidity, organization, and shape retention for the cytoplasm of eukaryotic cells. These structures play a key role in some cellular processes such as cell division, intracellular transport, and the internal organization of cells. In all the above applications, the network structure of microtubules is the main reason for the importance of in-depth studies of their mechanical properties. In this paper, the propagation of elastic waves in periodic networks based on two-dimensional fractal microtubules of fixed mass-center triangles is analyzed. This study begins with the selection of a suitable beam model for a microtubule and examines the dynamic behavior of microtubules by creating periodic structures. To obtain dispersion curves, finite element models of microtubules and their networks are developed, and the bandgap equations are calculated based on Bloch's theory. The results show that depending on the topology of the selected unit cells as well as the considered periods, it is possible to design a frequency gap in specific ranges for the application of low and high-frequency bio-filters. This study helps researchers control or absorb some unwanted vibrations using periodic structures, and thanks to their better biocompatibility, these networks can be used in next-generation nanomechanical devices such as implantable biosensors.

کلیدواژه‌ها [English]

  • : Microtubule
  • Architected structure
  • Bloch’s theorem
  • Dispersion relation
  • Bandgap
[1] N. Ahuja, K. Awad, M. Fiedler, P. Aswath, M. Brotto, V. Varanasi, Preliminary study of in‐situ 3D bioprinted nano‐silicate biopolymer scaffolds for muscle repair in VML defects, The FASEB Journal, 34(S1) (2020) 1-1.
[2] J.P. Giraldo, H. Wu, G.M. Newkirk, S. Kruss, Nanobiotechnology approaches for engineering smart plant sensors, Nat Nanotechnol, 14(6) (2019) 541-553.
[3] J.C. Montesinos, A. Abuzeineh, A. Kopf, A. Juanes‐Garcia, K. Ötvös, J. Petrášek, M. Sixt, E. Benková, Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage, The EMBO Journal, 39(17) (2020).
[4] B. Geiger, J.P. Spatz, A.D. Bershadsky, Environmental sensing through focal adhesions, Nature Reviews Molecular Cell Biology, 10(1) (2009) 21-33.
[5] P. Isermann, J. Lammerding, Nuclear Mechanics and Mechanotransduction in Health and Disease, Current Biology, 23(24) (2013) R1113-R1121.
[6] M. Kikumoto, M. Kurachi, V. Tosa, H. Tashiro, Flexural Rigidity of Individual Microtubules Measured by a Buckling Force with Optical Traps, Biophysical Journal, 90(5) (2006) 1687-1696.
[7] M. Kurachi, M. Hoshi, H. Tashiro, Buckling of a single microtubule by optical trapping forces: Direct measurement of microtubule rigidity, Cell Motility and the Cytoskeleton, 30(3) (1995) 221-228.
[8] J.A. Tuszynski, T. Luchko, E.J. Carpenter, E. Crawford, Results of Molecular Dynamics Computations of the Structural and Electrostatic Properties of Tubulin and Their Consequences for Microtubules, Journal of Computational and Theoretical Nanoscience, 1(4) (2004) 392-397.
[9] A. Ghorbanpour Arani, M. Abdollahian, M.H. Jalaei, Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory, Journal of Theoretical Biology, 367 (2015) 29-38.
[10] J. Zhang, S.A. Meguid, Buckling of microtubules: An insight by molecular and continuum mechanics, Applied Physics Letters, 105(17) (2014).
[11] M.D. Koch, N. Schneider, P. Nick, A. Rohrbach, Single microtubules and small networks become significantly stiffer on short time-scales upon mechanical stimulation, Scientific Reports, 7(1) (2017).
[12] T. Surrey, Nédélec, F., Leibler, S., Karsenti, E., Physical Properties Determining Self-Organization of Motors and Microtubules, Science, 292(5519) (2001) 1167-1171.
[13] L. Rayleigh, XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 24(147) (2009) 145-159.
[14] G.W. Stewart, Acoustic Wave Filters, Physical Review, 20(6) (1922) 528-551.
[15] M.P. Paidoussis, High-pass acoustic filters for hydraulic loops, Journal of Sound and Vibration, 14(4) (1971) 433-437.
[16] R.A. Johnson, Mechanical Filters. CRC Handbook of Electrical Filters., CRC, 1997.
[17] A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, V. Laude, Guiding and bending of acoustic waves in highly confined phononic crystal waveguides, Applied Physics Letters, 84(22) (2004) 4400-4402.
[18] S. Yang, J.H. Page, Z. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Focusing of Sound in a 3D Phononic Crystal, Physical Review Letters, 93(2) (2004).
[19] M.I. Hussein, Hulbert, G.M., Scott, R.A.: , Dispersive elastodynamics of 1D banded materials and structures: design, Journal of Sound and Vibration, 307 (2007) 865–893.
[20] S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, High-Q micromechanical resonators in a two-dimensional phononic crystal slab, Applied Physics Letters, 94(5) (2009).
[21] D. Torrent, J. Sánchez-Dehesa, Acoustic cloaking in two dimensions: a feasible approach, New Journal of Physics, 10(6) (2008).
[22] X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, Y.-F. Chen, Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode, Physical Review Letters, 106(8) (2011).
[23] M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Optomechanical crystals, Nature, 462(7269) (2009) 78-82.
[24] B.L. Davis, M.I. Hussein, Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance, Physical Review Letters, 112(5) (2014).
[25] M.I. Hussein, S. Biringen, O.R. Bilal, A. Kucala, Flow stabilization by subsurface phonons, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2177) (2015).
[26] M.I. Hussein, Dynamics of Lattice Materials, John Wiley & Sons Inc, 2017.
[27] A.S. Phani, J. Woodhouse, N.A. Fleck, Wave propagation in two-dimensional periodic lattices, The Journal of the Acoustical Society of America, 119(4) (2006) 1995-2005.
[28] M. Miniaci, A. Krushynska, A.B. Movchan, F. Bosia, N.M. Pugno, Spider web-inspired acoustic metamaterials, Applied Physics Letters, 109(7) (2016).
[29] Q.J. Lim, P. Wang, S.J.A. Koh, E.H. Khoo, K. Bertoldi, Wave propagation in fractal-inspired self-similar beam lattices, Applied Physics Letters, 107(22) (2015).
[30] E. Boatti, N. Vasios, K. Bertoldi, Origami Metamaterials for Tunable Thermal Expansion, Advanced Materials, 29(26) (2017).
[31] D. Mousanezhad, S. Babaee, R. Ghosh, E. Mahdi, K. Bertoldi, A. Vaziri, Honeycomb phononic crystals with self-similar hierarchy, Physical Review B, 92(10) (2015).
[32] W. David V. Hutton Pullman, Fundamentals of Finite Element Analysis, The McGraw−Hill Companies 2004.
[33] F. Farzbod, M.J. Leamy, Analysis of Bloch’s Method in Structures with Energy Dissipation, Journal of Vibration and Acoustics, 133(5) (2011).
[34] H. Jafari, M.H. Yazdi, M.M.S. Fakhrabadi, Damping effects on wave-propagation characteristics of microtubule-based bio-nano-metamaterials, International Journal of Mechanical Sciences, 184 (2020).
[35] H. Jafari, M.R.H. Yazdi, M.M.S. Fakhrabadi, Wave propagation in microtubule-based bio-nano-architected networks: A lesson from nature, International Journal of Mechanical Sciences, 164 (2019).