بررسی ارتعاشات غیرخطی تیر یک سرگیردار با یک ترک خستگی عرضی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

چکیده

پدیده‌های غیرخطی به طور گسترده‌ای در کاربردهای مهندسی وجود دارند. یک نمونه متداول از این پدیده‌ها در سازه‌های هوافضایی، ایجاد ترک‌های خستگی می‌باشد که تحت بارهای دینامیکی در طی سیکل ارتعاشات مدام باز و بسته می‌شوند و سبب ایجاد یک رفتار دو خطی در سازه می‌شوند. شناسایی دیرهنگام چنین آسیب‌های سازه‌ای می‌تواند منجر به ایجاد خرابی‌های فاجعه بار شود. بنابراین، شناسایی رفتار غیرخطی سازه ترک‌دار امری ضروری و بسیار حائز اهمیت می‌باشد. در این مطالعه رفتار غیرخطی یک تیر یکسرگیردار با یک ترک خستگی تنفسی و رفتار دوخطی مورد بررسی قرار گرفته است. به همین منظور در ابتدا به تخمین تابع چندجمله‌ای معادل با تابع دو خطی سفتی تیر پرداخته می‌شود. در ادامه با استفاده از روش اغتشاشات مقیاس‌های چندگانه معادله غیرخطی تیر مورد بررسی قرار گرفته و روابط دامنه بر حسب فرکانس تنظیمی در هر دو حالت رزونانس‌های هارمونیک و سوپرهارمونیک استخراج می‌گردند. سپس به بررسی حساسیت پاسخ به پارامترهایی مانند عمق و محل قرارگیری ترک، مقدار نیروی تحریک و میرایی تیر پرداخته شده است. با توجه به نتایج مشاهده گردید منحنی‌های پاسخ تیر در رزونانس اصلی در اثر تشدید پارامترهای ترک به شدت غیر خطی شده و دچار پدیده نرم‌شوندگی منحنی پاسخ گردیده‌اند. همچنین مطابق با نتایج رفتار تیر در رزونانس سوپرهارمونیک مرتبه دوم حساسیت بالاتری را به وجود ترک تنفسی نسبت به حالت رزونانس اصلی تیر دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Nonlinear Vibrations of A Cantilever Beam with A Transverse Fatigue Crack

نویسندگان [English]

  • Saeid Irani 1
  • Masoud Kharazan 1
  • Mohammad Ali Noorian 2
1 Faculty of Aerospace Engineering, K. N. Toosi University of Technology, Tehran, Iran.
2 Faculty of Aerospace Engineering, K. N. Toosi University of Technology,Tehran, Iran.
چکیده [English]

Nonlinear vibrations due to the presence of fatigue cracks are suitable indicators for detecting cracks in the structure. Late detection of such cracks may lead to catastrophic failures. Therefore, identifying the behavior of the cracked structure is very important for the prevention of structural failures. In this study, the nonlinear vibration of a cantilever beam with a transverse breathing crack and bilinear behavior has been studied. For this purpose, the restoring force of the cracked beam is considered a nonlinear polynomial function. Then, using the method of multiple scales, the approximated equation of the cracked beam is solved, and the frequency-response curves for both harmonic and superharmonic resonances are extracted. Then, the sensitivity of the responses to the crack depth, crack location, excitation force amplitude, and damping coefficient are investigated. The cracked beam frequency-response curves in the primary resonance have become highly nonlinear due to the increase of the crack parameters and cause softening of the curves. Also, it was observed that the behavior of the beam in superharmonic resonance is highly sensitive to the presence of a fatigue crack in the structure.

کلیدواژه‌ها [English]

  • Nonlinear vibration analysis
  • Breathing crack
  • Crack bilinear behavior
  • Superharmonic resonance
  • Structural health monitoring
[1] P.G. Kirmser, The effect of discontinuities on the natural frequency of beams, Proceedings of the American Society of Testing and Materials, 44 (1944) 897-904.
[2] W.T. Thomson, Vibration of slender bars with discontinuities in stiffness, J.Appl.Mech.16,  (1949) 203-207.
[3] A.D. Dimarogonas, Vibration of cracked structures: A state of the art review, in, 1996.
[4] M. Krawczuk, W. Ostachowicz, Damage indicators for diagnostic of fatigue cracks in structures by vibration measurements: A survey, in, 1996.
[5] P. Cawley, R. Ray, A comparison of the natural frequency changes produced by cracks and slots, Journal of vibration, acoustics, stress, and reliability in design, 110(3) (1988) 366-370.
[6] P. Gudmundson, Eigenfrequency changes of structures due to cracks, notches or other geometrical changes, Journal of the Mechanics and Physics of Solids, 30(5) (1982) 339-353.
[7] A. Bovsunovsky, C. Surace, Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review, in, 2015.
[8] A.P. Bovsunovskii, O.A. Bovsunovskii, Diagnostics of closing cracks in rodlike elements at nonlinear resonances by the method of variation of the asymmetry of driving forces, Strength of materials, 42(4) (2010) 397-405.
[9] D. Broda, L. Pieczonka, V. Hiwarkar, W.J. Staszewski, V.V. Silberschmidt, Generation of higher harmonics in longitudinal vibration of beams with breathing cracks, Journal of Sound and Vibration, 381 (2016) 206-219.
[10] H. Long, Y. Liu, K. Liu, Nonlinear Vibration Analysis of a Beam with a Breathing Crack, Applied Sciences, 9(18) (2019) 3874.
[11] C. Surace, R. Ruotolo, D. Storer, Detecting nonlinear behaviour using the Volterra series to assess damage in beam-like structures, Journal of Theoretical and applied mechanics, 49 (2011) 905-926.
[12] J. Prawin, K. Lakshmi, A.R.M. Rao, A novel vibration based breathing crack localization technique using a single sensor measurement, Mechanical Systems and Signal Processing, 122 (2019) 117-138.
[13] P. Cacciola, N. Impollonia, G. Muscolino, Crack detection and location in a damaged beam vibrating under white noise, Computers & structures, 81(18-19) (2003) 1773-1782.
[14] A. Rivola, P.R. White, Bispectral analysis of the bilinear oscillator with application to the detection of fatigue cracks, Journal of Sound and Vibration, 216(5) (1998) 889-910.
[15] S. Natsiavas, On the dynamics of oscillators with bi-linear damping and stiffness, International Journal of Non-Linear Mechanics, 25(5) (1990) 535-554.
[16] Y.C. Chu, M.H. Shen, Analysis of forced bilinear oscillators and the application to cracked beam dynamics, AIAA journal, 30(10) (1992) 2512-2519.
[17] P.V. Bayly, On the spectral signature of weakly bilinear oscillators,  (1996).
[18] J. Prawin, A.R.M. Rao, Development of polynomial model for cantilever beam with breathing crack, Procedia Engineering, 144 (2016) 1419-1425.
[19] W. Liu, M.E. Barkey, Nonlinear vibrational response of a single edge cracked beam, Journal of Mechanical Science and Technology, 31(11) (2017) 5231-5243.
[20] M. Kharazan, S. Irani, M.A. Noorian, M.R. Salimi, Effect of a breathing crack on the damping changes in nonlinear vibrations of a cracked beam: Experimental and theoretical investigations, Journal of Vibration and Control,  (2020) 1077546320960312.
[21] M. Lalanne, P.a. Berthier, Mechanical vibrations for engineers,  (1984).
[22] J. Prawin, A.R.M. Rao, Nonlinear System Identification of Breathing Crack Using Empirical Slow-Flow Model,  (2019) 1075-1085.
[23] S.M. Cheng, A.S.J. Swamidas, X.J. Wu, W. Wallace, Vibrational response of a beam with a breathing crack, in, 1999.
[24] A.D. Dimarogonas, S.A. Paipetis, T.G. Chondros, Analytical methods in rotor dynamics, Springer Science & Business Media, 2013.
[25] A.E. Ismail, Mode I stress intensity factors of sickle-shaped surface cracks in round solid bars under bending moment., International Journal of Automotive & Mechanical Engineering, 13(2) (2016).
[26] H. Jeffreys, B. Jeffreys, B. Swirles, Methods of mathematical physics, Cambridge university press, 1999.
[27] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons, 2008.
[28] A.H. Nayfeh, Introduction to perturbation techniques, John Wiley & Sons, 2011.
[29] A.P. Bovsunovskii, C. Surace, O.A. Bovsunovskii, The effect of damping and force application point on the non-linear dynamic behavior of a cracked beam at sub-and superresonance vibrations, Strength of materials, 38(5) (2006) 492-497.
[30] A.P. Bovsunovsky, Efficiency of crack detection based on damping characteristics, Engineering Fracture Mechanics, 214 (2019) 464-473.
[31] R. Ruotolo, C. Surace, P. Crespo, D. Storer, Harmonic analysis of the vibrations of a cantilevered beam with a closing crack, Computers & structures, 61(6) (1996) 1057-1074.