داده‌برداری سه‌بعدی از سطح پشت به منظور کمی‌سازی انحنای مهره‌ها بدون نیاز به مارکرگذاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه یزد

2 دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

3 هسته علمی سامانه های پشتیبان در توسعه سلامت، دانشگاه یزد

چکیده

داده‌برداری اشعه‌ی ایکس اگرچه روش دقیقی برای سنجش صفحه‌ای انحناهای ستون مهره است، اما تشعشع دریافتی زیان‌آور و محدود کننده دفعات داده‌برداری است. هدف از این مطالعهمعرفی روشی غیر تهاجمی مبتنی بر داده‌برداری سطحی برای این منظور است. در این روش از دوربین‌های عمق‌سنج مادون قرمز برای تولید ابر نقاط سه‌بعدی از سطح پشت بیمار استفاده می‌شود. برای تحلیل نقشه‌ی توپوگرافی بدست‌آمده از سطح پشت، ابتدا موقعیت لندمارک‌های آناتومیکی مشخص می‌شود؛ سپس موقعیت مرکز مهره‌ها تخمین زده شده و انحنای ستون مهره‌ها به روش زاویه‌ی کوب محاسبه می‌شود. مرور مطالعات مشابه گذشته و نتایج مطالعه‌ی موردی، قابلیت تخمین انحنای ستون مهره‌ها را از نقشه‌ی توپوگرافی پشت نشان می‌دهد. بر این اساس می‌توان گفت که استفاده از روش مذکور با توجه به داشتن مزیت‌هایی مانند غیرتهاجمی‌بودن، ارزان و قابل حمل‌بودن و نتایج قابل قبول می‌تواند در کلینیک و مراکز ارتوپدی فنی جهت پایش و غربالگری بیماران اسکولیوز، و نیز پایش مستمر و ارزیابی روند بهبود در طول دوره درمان به‌کار رود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Three-dimensional surface capture from the back anatomy to quantify three-dimensional vertebral column curvatures without using anatomical markers

نویسندگان [English]

  • AmirHossein Tavari 1
  • Mohammad Hadi Honarvar 2
  • Mostafa Hajlotfalian 3
1 Mechanical Engineering Dpt., Yazd University
2 Mechanical Engineering Department, Yazd university, Yazd, Iran
3 Center of Excellence for Support Systems in Health Development, Yazd University
چکیده [English]

Although X-ray imaging is a precise method for measuring vertebral curvature, the radiation dose that patient receives may be detrimental for the body. The purpose of this study is to introduce a non-invasive method based on surface data acquisition to determine vertebral curvatures in three-dimensional space. In this method, infrared depth-sensing cameras are used to generate a 3D point cloud from the patient's back surface. To analyze the topographic map obtained from the back surface, first of all, the anatomical landmarks are determined. These landmarks are necessary for transferring the point cloud data into the frontal plane and make the results free of small setup errors of the sensor. Then, the central position of each vertebra is estimated and the vertebral curvatures are calculated by Cobb's angle method. A review of similar past studies and our case study results demonstrate that estimation of vertebral curvatures from back topographic map is possible. Accordingly, can be said, this non-invasive, inexpensive and portable method with acceptable results can be used in clinics and orthopedic centers for monitoring and screening of scoliosis patients.

کلیدواژه‌ها [English]

  • Surface data acquisition
  • Point cloud
  • Vertebral curvatures
  • Scoliosis
[1] T. Hattori, H. Sakaura, M. Iwasaki, Y. Nagamoto, H. Yoshikawa, K. Sugamoto, In vivo three-dimensional segmental analysis of adolescent idiopathic scoliosis, European Spine Journal, 20(10) (2011) 1745-1750.
[2] B. Drerup, Rasterstereographic measurement of scoliotic deformity, Scoliosis, 9(1) (2014) 22.
[3] J. Lonstein, J. Carlson, The prediction of curve progression in untreated idiopathic scoliosis, J Bone Joint Surg,  (1984) 1061-1071.
[4] A. Tabard-Fougère, A. Bonnefoy-Mazure, S. Hanquinet, P. Lascombes, S. Armand, R. Dayer, Validity and reliability of spine rasterstereography in patients with adolescent idiopathic scoliosis, Spine, 42(2) (2017) 98-105.
[5] J.M. Frerich, K. Hertzler, P. Knott, S. Mardjetko, Comparison of radiographic and surface topography measurements in adolescents with idiopathic scoliosis, The open orthopaedics journal, 6 (2012) 261.
[6] N.R. Council, Health effects of exposure to low levels of ionizing radiation: BEIR V, National Academies, 1990.
[7] D.J. Brenner, C.D. Elliston, E.J. Hall, W.E. Berdon, Estimated risks of radiation-induced fatal cancer from pediatric CT, American journal of roentgenology, 176(2) (2001) 289-296.
[8] H.k. Geijer, K.-W. Beckman, B. Jonsson, T.r. Andersson, J. Persliden, Digital radiography of scoliosis with a scanning method: initial evaluation, Radiology, 218(2) (2001) 402-410.
[9] S. Deschênes, G. Charron, G. Beaudoin, H. Labelle, J. Dubois, M.-C. Miron, S. Parent, Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager, Spine, 35(9) (2010) 989-994.
[10] Z. Al-Aubaidi, D. Lebel, K. Oudjhane, R. Zeller, Three-dimensional imaging of the spine using the EOS system: is it reliable? A comparative study using computed tomography imaging, Journal of Pediatric Orthopaedics B, 22(5) (2013) 409-412.
[11] Y.-P. Zheng, T.T.-Y. Lee, K.K.-L. Lai, B.H.-K. Yip, G.-Q. Zhou, W.-W. Jiang, J.C.-W. Cheung, M.-S. Wong, B.K.-W. Ng, J.C.-Y. Cheng, A reliability and validity study for Scolioscan: a radiation-free scoliosis assessment system using 3D ultrasound imaging, Scoliosis and spinal disorders, 11(1) (2016) 13.
[12] F. Balg, M. Juteau, C. Theoret, A. Svotelis, G. Grenier, Validity and reliability of the iPhone to measure rib hump in scoliosis, Journal of Pediatric Orthopaedics, 34(8) (2014) 774-779.
[13] L.E. Amendt, K.L. Ause-Ellias, J.L. Eybers, C.T. Wadsworth, D.H. Nielsen, S.L. Weinstein, Validity and reliability testing of the Scoliometer®, Physical therapy, 70(2) (1990) 108-117.
[14] F. Seidi, R. Rajabi, T. Ebrahimi, A. Tavanai, S. Moussavi, The Iranian flexible ruler reliability and validity in lumbar lordosis measurements, World J Sport Sci, 2(2) (2009) 95-99.
[15] P. Knott, S. Mardjetko, D. Nance, M. Dunn, Electromagnetic topographical technique of curve evaluation for adolescent idiopathic scoliosis, Spine, 31(24) (2006) E911-E915.
[16] S. Roy, A.T. Grünwald, A. Alves-Pinto, R. Maier, D. Cremers, D. Pfeiffer, R. Lampe, A Noninvasive 3D Body Scanner and Software Tool towards Analysis of Scoliosis, BioMed research international, 2019 (2019).
[17] G. Kandasamy, J. Bettany-Saltikov, P. Van Schaik, Posture and Back Shape Measurement Tools: A Narrative Literature Review, in:  Spinal Deformities in Adolescents, Adults and Older Adults, IntechOpen, 2020.
[18] G.G. Scholten-Peeters, N. Franken, A. Beumer, A.P. Verhagen, The opinion and experiences of Dutch orthopedic surgeons and radiologists about diagnostic musculoskeletal ultrasound imaging in primary care: a survey, Manual Therapy, 19(2) (2014) 109-113.
[19] M. Thoomes-de Graaf, G. Scholten-Peeters, E. Duijn, Y.H. Karel, M.P. van den Borne, A. Beumer, R.P. Ottenheijm, G. Dinant, E. Tetteroo, C. Lucas, Inter-professional agreement of ultrasound-based diagnoses in patients with shoulder pain between physical therapists and radiologists in the Netherlands, Manual therapy, 19(5) (2014) 478-483.
[20] B. Drerup, E. Hierholzer, Objective determination of anatomical landmarks on the body surface: measurement of the vertebra prominens from surface curvature, Journal of biomechanics, 18(6) (1985) 467-474.
[21] S. Schülein, S. Mendoza, R. Malzkorn, J. Harms, A. Skwara, Rasterstereographic evaluation of interobserver and intraobserver reliability in postsurgical adolescent idiopathic scoliosis patients, Clinical Spine Surgery, 26(4) (2013) E143-E149.
[22] M. Melvin, M. Sylvia, W. Udo, S. Helmut, J.R. Paletta, S. Adrian, Reproducibility of rasterstereography for kyphotic and lordotic angles, trunk length, and trunk inclination: a reliability study, Spine, 35(14) (2010) 1353-1358.
[23] K. Khoshelham, Accuracy analysis of kinect depth data, in:  ISPRS workshop laser scanning, 2011.
[24] N. Fukushima, ICP WITH DEPTH COMPENSATION FOR CALIBRATION OF MULTIPLE TOF SENSORS, in:  2018-3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), IEEE, 2018, pp. 1-4.
[25] J. Jiao, L. Yuan, W. Tang, Z. Deng, Q. Wu, A post-rectification approach of depth images of Kinect v2 for 3D reconstruction of indoor scenes, ISPRS International Journal of Geo-Information, 6(11) (2017) 349.
[26] V. Bonnet, T. Yamaguchi, A. Dupeyron, S. Andary, A. Seilles, P. Fraisse, G. Venture, Automatic estimate of back anatomical landmarks and 3D spine curve from a Kinect sensor, in:  2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, 2016, pp. 924-929.
[27] B. Drerup, E. Hierholzer, Back shape measurement using video rasterstereography and three-dimensional reconstruction of spinal shape, Clinical Biomechanics, 9(1) (1994) 28-36.