[1] S. Shan, S.H. Kang, Z. Zhao, L. Fang, K. Bertoldi, Design of planar isotropic negative Poisson’s ratio structures, Extreme Mechanics Letters, 4 (2015) 96-102.
[2] L.J. Gibson, M.F. Ashby, G.S. Schajer, C.I. Robertson, The mechanics of two-dimensional cellular materials, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 382(1782) (1982) 25-42.
[3] R. Lakes, Foam Structures with a Negative Poisson's Ratio, Science, 235(4792) (1987) 1038.
[4] K.E. Evans, A. Alderson, Auxetic Materials: Functional Materials and Structures from Lateral Thinking!, Advanced Materials, 12(9) (2000) 617-628.
[5] Y. Liu, H. Hu, A review on auxetic structures and polymeric materials, Scientific research and essays, 5 (2010) 1052-1063.
[6] K.K. Saxena, R. Das, E.P. Calius, Three Decades of Auxetics Research − Materials with Negative Poisson's Ratio: A Review, Advanced Engineering Materials, 18(11) (2016) 1847-1870.
[7] F. Scarpa, S. Blain, T. Lew, D. Perrott, M. Ruzzene, J.R. Yates, Elastic buckling of hexagonal chiral cell honeycombs, Composites Part A: Applied Science and Manufacturing, 38(2) (2007) 280-289.
[8] D. Prall, R.S. Lakes, Properties of a chiral honeycomb with a poisson's ratio of — 1, International Journal of Mechanical Sciences, 39(3) (1997) 305-314.
[9] R. Gatt, L. Mizzi, J.I. Azzopardi, K.M. Azzopardi, D. Attard, A. Casha, J. Briffa, J.N. Grima, Hierarchical Auxetic Mechanical Metamaterials, Scientific Reports, 5(1) (2015) 8395.
[10] J.B. Choi, R.S. Lakes, Non-linear properties of polymer cellular materials with a negative Poisson's ratio, Journal of Materials Science, 27(17) (1992) 4678-4684.
[11] J. Schwerdtfeger, F. Schury, M. Stingl, F. Wein, R.F. Singer, C. Körner, Mechanical characterisation of a periodic auxetic structure produced by SEBM, physica status solidi (b), 249(7) (2012) 1347-1352.
[12] X.-T. Wang, X.-W. Li, L. Ma, Interlocking assembled 3D auxetic cellular structures, Materials & Design, 99 (2016) 467-476.
[13] Z.Y. Wei, Z.V. Guo, L. Dudte, H.Y. Liang, L. Mahadevan, Geometric mechanics of periodic pleated origami, Phys Rev Lett, 110(21) (2013) 215501.
[14] M. Schenk, S.D. Guest, Geometry of Miura-folded metamaterials, Proceedings of the National Academy of Sciences, 110(9) (2013) 3276.
[15] P. Vogiatzis, S. Chen, X. Wang, T. Li, L. Wang, Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method, Computer-Aided Design, 83 (2017) 15-32.
[16] K. Bertoldi, P.M. Reis, S. Willshaw, T. Mullin, Negative Poisson's Ratio Behavior Induced by an Elastic Instability, Advanced Materials, 22(3) (2010) 361-366.
[17] P. Vogiatzis, S. Chen, C. Zhou, An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization, Journal of Computing and Information Science in Engineering, 17(4) (2017).
[18] H.A. Eschenauer , N. Olhoff Topology optimization of continuum structures: A review*, Applied Mechanics Reviews, 54(4) (2001) 331-390.
[19] G.I.N. Rozvany, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Structural and Multidisciplinary Optimization, 21(2) (2001) 90-108.
[20] O. Sigmund, K. Maute, Topology optimization approaches, Structural and Multidisciplinary Optimization, 48(6) (2013) 1031-1055.
[21] M.F. Ahmed, Y. Li, C. Zeng, Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire, Materials Chemistry and Physics, 229 (2019) 167-173.
[22] Y. Jiang, Z. Liu, N. Matsuhisa, D. Qi, W.R. Leow, H. Yang, J. Yu, G. Chen, Y. Liu, C. Wan, Z. Liu, X. Chen, Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors, Advanced Materials, 30(12) (2018) 1706589.
[23] H.W. Kim, T.Y. Kim, H.K. Park, I. You, J. Kwak, J.C. Kim, H. Hwang, H.S. Kim, U. Jeong, Hygroscopic Auxetic On-Skin Sensors for Easy-to-Handle Repeated Daily Use, ACS Applied Materials & Interfaces, 10(46) (2018) 40141-40148.
[24] M. Li, H. Li, W. Zhong, Q. Zhao, D. Wang, Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection, ACS Applied Materials & Interfaces, 6(2) (2014) 1313-1319.
[25] D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes, Nature nanotechnology, 6(12) (2011) 788-792.
[26] H. Ota, K. Chen, Y. Lin, D. Kiriya, H. Shiraki, Z. Yu, T.-J. Ha, A. Javey, Highly deformable liquid-state heterojunction sensors, Nature communications, 5(1) (2014) 5032.
[27] K. Takei, T. Takahashi, J.C. Ho, H. Ko, A.G. Gillies, P.W. Leu, R.S. Fearing, A. Javey, Nanowire active-matrix circuitry for low-voltage macroscale artificial skin, Nature materials, 9(10) (2010) 821-826.
[28] H. Tian, Y. Shu, Y.-L. Cui, W.-T. Mi, Y. Yang, D. Xie, T.-L. Ren, Scalable fabrication of high-performance and flexible graphene strain sensors, Nanoscale, 6(2) (2014) 699-705.
[29] H. Wang, M. Totaro, L. Beccai, Toward Perceptive Soft Robots: Progress and Challenges, Advanced Science, 5(9) (2018) 1800541.
[30] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nature nanotechnology, 6(5) (2011) 296-301.
[31] H.-B. Yao, J. Ge, C.-F. Wang, X. Wang, W. Hu, Z.-J. Zheng, Y. Ni, S.-H. Yu, A Flexible and Highly Pressure-Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design, Advanced Materials, 25(46) (2013) 6692-6698.
[32] B. Taherkhani, M.B. Azizkhani, J. Kadkhodapour, A.P. Anaraki, S. Rastgordani, Highly sensitive, piezoresistive, silicone/carbon fiber-based auxetic sensor for low strain values, Sensors and Actuators A: Physical, 305 (2020) 111939.
[33] Y. Li, S. Luo, M.-C. Yang, R. Liang, C. Zeng, Poisson Ratio and Piezoresistive Sensing: A New Route to High-Performance 3D Flexible and Stretchable Sensors of Multimodal Sensing Capability, Advanced Functional Materials, 26(17) (2016) 2900-2908.
[34] S. Rezaei, J. Kadkhodapour, R. Hamzehei, B. Taherkhani, A.P. Anaraki, S. Dariushi, Design and modeling of the 2D auxetic metamaterials with hyperelastic properties using topology optimization approach, Photonics and Nanostructures - Fundamentals and Applications, 43 (2021) 100868.
[35] B. Taherkhani, A.P. Anaraki, J. Kadkhodapour, S. Rezaei, H. Tu, Large deformation of TPU re-entrant auxetic structures designed by TO approach, Journal of Elastomers & Plastics, 0(0) 0095244320938411.
[36] P. Vogiatzis, S. Chen, C. Zhou, An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization, Journal of Computing and Information Science in Engineering, 17(4) (2017).
[37] A. Ingrole, A. Hao, R. Liang, Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement, Materials & Design, 117 (2017) 72-83.
[38] J. Zhang, G. Lu, Z. Wang, D. Ruan, A. Alomarah, Y. Durandet, Large deformation of an auxetic structure in tension: Experiments and finite element analysis, Composite Structures, 184 (2018) 92-101.
[39] Y. Li, S. Luo, M.-C. Yang, R. Liang, C. Zeng, Poisson Ratio and Piezoresistive Sensing: A New Route to High-Performance 3D Flexible and Stretchable Sensors of Multimodal Sensing Capability, Advanced Functional Materials, 26(17) (2016) 2900-2908.
[40] Y. Wei, S. Chen, Y. Lin, X. Yuan, L. Liu, Silver nanowires coated on cotton for flexible pressure sensors, Journal of Materials Chemistry C, 4(5) (2016) 935-943.
[41] M.B. Azizkhani, J. Kadkhodapour, S. Rastgordani, A.P. Anaraki, B. Shirkavand Hadavand, Highly Sensitive, Stretchable Chopped Carbon Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection, Fibers and Polymers, 20(1) (2019) 35-44.
[42] M.B. Azizkhani, S. Rastgordani, A.P. Anaraki, J. Kadkhodapour, B.S. Hadavand, Highly sensitive and stretchable strain sensors based on chopped carbon fibers sandwiched between silicone rubber layers for human motion detections, Journal of Composite Materials, (2019) 0021998319855758.