مطالعه جریان و انتقال حرارت جت نوسانی سینوسی برخوردی در فاصله‌های نزدیک به سطح مقعر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 ذانشجوی دکترا-دانشگاه سمنان

2 عضو هیات علمی / دانشگاه سمنان

3 دانشگاه سمنان

چکیده

هدف اصلی این پژوهش بررسی اثر نوسانی کردن جت ورودی بر میزان انتقال حرارت جت برخوردی در فاصله‌های کم از سطح مقعر می‌باشد. به این منظور شبیه‌سازی سه بعدی جریان و انتقال حرارات جت نوسانی سینوسی در فواصل جت تا سطح برخورد 0/5 تا 4 برابر قطر جت و برای اعداد رینولدز 7000 و 14000 به انجام رسید. نتایج حاصل از شبیه‌سازی عددی تطابق مناسبی، با نتایج آزمایشگاهی جت پایا دارد. نتابج نشان می‌دهد اثر نوسانی کردن جریان با تابع سینوسی در فاصله‌های کم بین جت و صفحه مقعر کاهش می‌یابد. به طوری که در فاصله 4 برابری قطر جت از سطح برخورد، نوسانی کردن جت سینوسی منجر به افزایش 10درصدی ناسلت متوسط سطح گردید در حالی که این مقدار برای فاصله 0/5 برابری قطر جت، برابر 5 درصد می‌باشد. بررسی اثر نوسان بر عدد ناسلت نشان داد که با نوسانی کردن جریان با جت نوسانی سینوسی، ابتدا ناسلت کاهش می‌یابد، و سپس با افزایش فرکانس نوسان جت ورودی، عدد ناسلت افزایش می‌یابد. با مشاهده نتایج، می‌توان دریافت که با افزایش فاصله بین سطح و جت ورودی، عدد ناسلت به صورت محسوسی کاهش می‌یابد. این میزان کاهش، در جریان نوسانی در مقایسه با جت پایا کمتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the Flow and Heat Transfer of Pulsed Sinusoidal Impinging Jet at Distances Close To the Concave Surface

نویسندگان [English]

  • Saeed Rakhsha 1
  • Mehran Rajabi Zargarabadi 2
  • Seyfolah Saedodin 3
1 Department of Mechanical Engineering, Semnan University
2 Department of Mechanical Engineering, Semnan University
3 Department of Mechanical Engineering, Semnan University
چکیده [English]

The main purpose of this study is to investigate the effect of the pulsating of the inlet jet on the heat transfer rate short distances of the nozzle from the concave surface. For this purpose, three-dimensional simulation of flow and heat transfer of sinusoidal pulsed jets on the concave surface has been performed at distances of 0.5 times of nozzle diameter to 4 and for Reynolds numbers of 7000 and 14000. The results of the numerical simulation are in good agreement with the experimental results of the steady jet. The result shows that the effect of pulsating the flow with the sine function decreases at short distances between the jet and the concave surface. So that at a distance of 4 times of nozzle diameter, pulsating jet led to a 10% increase in the average Nu, while this value is equal to 5% for a distance of 0.5 times of nozzle diameter. It can be found that pulsating the flow decreases Nu at low frequencies, and then with increasing the frequency of the pulsed jet, the Nu number increases. Furthermore, with increasing the distance between the surface and the inlet jet, the Nu number decreases significantly. This rate of reduction is lower in comparison to the steady jet.

کلیدواژه‌ها [English]

  • Sinusoidal pulsed jets
  • Concave surface
  • Impinging jet
  • Heat transfer
  • Nu number
[1] A. Hadipour, M.R. Zargarabadi, M. Dehghan, Effect of micro-pin characteristics on flow and heat transfer by a circular jet impinging to the flat surface, Journal of Thermal Analysis and Calorimetry,  (2020) 1-9.
[2] M. Mehdi Zolfagharian, M. Rajabi-Zargarabadi, A.S. Mujumdar, M. Valipour, M. Asadollahi, Optimization of turbine blade cooling using combined cooling techniques, Engineering Applications of Computational Fluid Mechanics, 8(3) (2014) 462-475.
[3] M. Attalla, A.A. Abdel Samee, N. N. Salem, Experimental investigation of heat transfer of impinging jet on a roughened plate by a micro cubic shape, Experimental Heat Transfer, 33(3) (2020) 210-225.
[4] H. Ramezanzadeh, A. Ramiar, M. Yousefifard, M. Ghasemian, Numerical analysis of sinusoidal and step pulse velocity effects on an impinging jet quenching process, Journal of Thermal Analysis and Calorimetry, 140(1) (2020) 331-349.
[5] M. Haines, I. Taylor, The turbulence modelling of a pulsed impinging jet using LES and a divergence free mass flux corrected turbulent inlet, Journal of Wind Engineering and Industrial Aerodynamics, 188 (2019) 338-364.
[6] P. Xu, S. Qiu, M. Yu, X. Qiao, A.S. Mujumdar, A study on the heat and mass transfer properties of multiple pulsating impinging jets, International Communications in Heat and Mass Transfer, 39(3) (2012) 378-382.
[7] R.C. Behera, P. Dutta, K. Srinivasan, Numerical study of interrupted impinging jets for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 30(2) (2007) 275-284.
[8] J. Zhou, Y. Wang, G. Middelberg, H. Herwig, Unsteady jet impingement: heat transfer on smooth and non-smooth surfaces, International Communications in Heat and Mass Transfer, 36(2) (2009) 103-110.
[9] P. Xu, A.S. Mujumdar, H.J. Poh, B. Yu, Heat transfer under a pulsed slot turbulent impinging jet at large temperature differences, Thermal Science, 14(1) (2010) 271-281.
[10] J.C. Kurnia, A.P. Sasmito, P. Xu, A.S. Mujumdar, Performance and potential energy saving of thermal dryer with intermittent impinging jet, Applied Thermal Engineering, 113 (2017) 246-258.
[11] G. Middelberg, H. Herwig, Convective heat transfer under unsteady impinging jets: the effect of the shape of the unsteadiness, Heat and mass transfer, 45(12) (2009) 1519-1532.
[12] R. Zulkifli, K. Sopian, S. Abdullah, M.S. Takriff, Comparison of local Nusselt number for steady and pulsating circular jet at Reynolds number of 16000, European Journal of Scientific Research, 29(3) (2009) 369-378.
[13] J. Mohammadpour, M.M. Zolfagharian, A.S. Mujumdar, M.R. Zargarabadi, M. Abdulahzadeh, Heat transfer under composite arrangement of pulsed and steady turbulent submerged multiple jets impinging on a flat surface, International journal of thermal sciences, 86 (2014) 139-147.
[14] Y. Zhou, G. Lin, X. Bu, L. Bai, D. Wen, Experimental study of curvature effects on jet impingement heat transfer on concave surfaces, Chinese Journal of Aeronautics, 30(2) (2017) 586-594.
[15] J. Taghinia, M. Rahman, T. Siikonen, Heat transfer and flow analysis of jet impingement on concave surfaces, Applied Thermal Engineering, 84 (2015) 448-459.
[16] A. Hashiehbaf, A. Baramade, A. Agrawal, G. Romano, Experimental investigation on an axisymmetric turbulent jet impinging on a concave surface, International Journal of Heat and Fluid Flow, 53 (2015) 167-182.
[17] J. Mohammadpour, M. Rajabi-Zargarabadi, A.S. Mujumdar, H. Ahmadi, Effect of intermittent and sinusoidal pulsed flows on impingement heat transfer from a concave surface, International Journal of Thermal Sciences, 76 (2014) 118-127.
[18] M.R. Zargarabadi, E. Rezaei, B. Yousefi-Lafouraki, Numerical analysis of turbulent flow and heat transfer of sinusoidal pulsed jet impinging on an asymmetrical concave surface, Applied Thermal Engineering, 128 (2018) 578-585.
[19] D. Qiu, C. Wang, L. Luo, S. Wang, Z. Zhao, Z. Wang, On heat transfer and flow characteristics of jets impinging onto a concave surface with varying jet arrangements, Journal of Thermal Analysis and Calorimetry, 141(1) (2020) 57-68.
[20] M.R.Z. R.Tarighi, Numerical Simulation of the Effect of the Location of Impinging Jets on the Convective
Heat Transfer from a Cylindrical Concave Surface, Journal of Applied and Computational Sciences in Mechanics, 27(2) (2016) 71-86. (In Persian).
[21] A.H.M.R. Zargarabadi, Experimental Analysis of Heat Transfer from Round Jet Impinging to Asymmetric Concave Surface, Amirkabir Journal of Mechanical Engineering, 50(6) (2019) 1229-1236. (In Persian).
[22] M.R.Z. A. Hajimohammadi, Numerical Simulation of the Effects of Sinusoidal Pulsed Impinging Jet on Heat Transfer from the Concave Cylindrical Surface, ournal of Applied and Computational Sciences in Mechanics 29(1) (2017) 17-30. (In Persian).
[23] H. Liakos, E. Keramida, M. Founti, N. Markatos, Heat and mass transfer study of impinging turbulent premixed flames, Heat and Mass Transfer, 38(4) (2002) 425-432.
[24] M. Sharif, K. Mothe, Parametric study of turbulent slot-jet impingement heat transfer from concave cylindrical surfaces, International Journal of Thermal Sciences, 49(2) (2010) 428-442.
[25] K. Parham, E. Esmaeilzadeh, U. Atikol, L. Aldabbagh, A numerical study of turbulent opposed impinging jets issuing from triangular nozzles with different geometries, Heat and Mass Transfer, 47(4) (2011) 427-437.
[26] V. Yakhot, S. Orszag, S. Thangam, T. Gatski, C. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics, 4(7) (1992) 1510-1520.
[27] S. Kline, F. McClintock, Describing uncertainties in single-sample experiments, Mech, in, Engng, 1953.
[28] M. Fenot, E. Dorignac, J.-J. Vullierme, An experimental study on hot round jets impinging a concave surface, International Journal of Heat and Fluid Flow, 29(4) (2008) 945-956.
[29] H.M. Hofmann, D.L. Movileanu, M. Kind, H. Martin, Influence of a pulsation on heat transfer and flow structure in submerged impinging jets, International Journal of Heat and Mass Transfer, 50(17-18) (2007) 3638-3648.
[30] S. Alimohammadi, D.B. Murray, T. Persoons, On the numerical–experimental analysis and scaling of convective heat transfer to pulsating impinging jets, International Journal of Thermal Sciences, 98 (2015) 296-311.
[31] H. Yadav, A. Agrawal, A. Srivastava, Mixing and entrainment characteristics of a pulse jet, International Journal of Heat and Fluid Flow, 61 (2016) 749-761.
[32] R.B. Kalifa, S. Habli, N.M. Saïd, H. Bournot, G. Le Palec, Parametric analysis of a round jet impingement on a heated plate, International Journal of Heat and Fluid Flow, 57 (2016) 11-23.
[33] S. Ghadi, K. Esmailpour, S. Hosseinalipour, A. Mujumdar, Experimental study of formation and development of coherent vortical structures in pulsed turbulent impinging jet, Experimental Thermal and Fluid Science, 74 (2016) 382-389.
[34] A. Hadipour, M.R. Zargarabadi, Heat transfer and flow characteristics of impinging jet on a concave surface at small nozzle to surface distances, Applied Thermal Engineering, 138 (2018) 534-541.
[35] S.M. Hosseinalipour, S. Rashidzadeh, M. Moghimi, K. Esmailpour, Numerical study of laminar pulsed impinging jet on the metallic foam blocks using the local thermal non-equilibrium model, Journal of Thermal Analysis and Calorimetry,  (2020) 1-16.