بررسی تجربی و تحلیل تأثیر تردی هیدروژنی و تنش پسماند بر خواص مکانیکی فولاد GTD450

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران

2 استاد دانشگاه/ گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران،

3 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

موضوع مقاله حاضر، مطالعه تجربی اثرات تردی هیدروژنی به همراه تنش پسماند بر روی خواص مکانیکی آلیاژ جی-تی-دی450 است. بدین منظور از محلول0/5 مولار سولفوریک اسید برای ایجاد تردی هیدروژنی یک و دوساعته و از روش دندانه‌گذاری با سطح استوانه‌ای برای ایجاد تنش پسماند استفاده شد. بر اساس یافته‎‌های آزمایشگاهی، تغییرات انعطاف‌پذیری و درصد کاهش سطح مقطع شکست، نسبت به شرایط مبنا در چهار سطح آزمایش صورت پذیرفته به ترتیب در محدوده 42/69% تا 74/68% و 11/78% تا 39/58% به‌دست‌ آمد. نتایج تحلیل آماری مشارکت تنش پسماند و تردی هیدروژنی در انعطاف‌پذیری را به ترتیب معادل 1/15% و 67/05% برآورد کرده است. برای تنش پسماند مربوط به نیروی پنج کیلو نیوتنی، با افزایش مدت‌ زمان شارژ هیدروژنی به دو ساعت، مقدار چقرمگی 60/54% کاهش می‌یابد. همچنین مشاهده گردید که حداکثر تغییرات در تنش تسلیم نسبت به شرایط مبنا، 1/68% است که در نمونه با تردی هیدروژنی یک‌ساعته و تنش پسماند ناشی از نیروی نه کیلو نیوتنی ایجاد شده است. در حالت مبنا گلویی ‌شدن با کرنش زیاد و کاهش 36 درصدی سطح مقطع شکست رخ داد؛ اما در شرایط شارژ دوساعته، شکست با حداقل گلویی ‌شدن، کرنش کم و کاهش اندک سطح مقطع، به میزان 21/75% صورت گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of Effects of Hydrogen Embrittlement and Residual Stress on Mechanical Properties of GTD450

نویسندگان [English]

  • sepide nosrati 1
  • Esmaeil Poursaeidi 2
  • َAmin Dadashi 3
1 Department of mechanical engineering, Faculty of engineering, University of Zanjan, Zanjan, Iran
2 University Professor/ Department of mechanical engineering, Faculty of engineering, University of Zanjan, Zanjan, Iran.
3 PhD student/ Faculty of mechanical engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

The subject of the present paper is the experimental study of the effects of hydrogen embrittlement with residual stress on the mechanical properties of GTD450 alloy. Hence, 0.5 M sulfuric acid was used to create one- and two-hour hydrogen charging, and the cylindrical-toothed method was used to generate residual stress. Based on experimental findings, changes in flexibility and percentage of reduction of failure area, compared to the baseline conditions ranged from 42.69% to 74.68% and 11.78% to 39.58%, respectively. The results of statistical analysis have estimated the contribution of residual stress and hydrogen embrittlement to flexibility as 1.15% and 67.05%, respectively. For the residual stress related to the five kN force, by increasing the hydrogen charging to two hours, the toughness value decreases by 60.54%. It was also observed that the maximum change in yield stress is 1.68%, which is caused in the sample by one-hour hydrogen embrittlement and residual stress due to a force of nine kN. In the baseline case, the necking was collapsed with high strain, and the area of failure was reduced by 36%; however, under two-hour charging, failure occurred with a minimum of necking, low strain, and slight reduction of failure area by 21.75%.

کلیدواژه‌ها [English]

  • Hydrogen embrittlement
  • Residual stress
  • Mechanical Properties
  • Tensile Test
  • GTD450 steel
[1] S. Woods, J.A. Lee, Hydrogen Embrittlement,  (2016).
[2] W. Jang, S. Kim, K. Shin, Hydrogen-assisted deformation and fracture behaviors of Al 8090, Metallurgical and Materials Transactions A, 33(6) (2002) 1755-1763.
[3] G. Lu, E. Kaxiras, Hydrogen embrittlement of aluminum: the crucial role of vacancies, Physical review letters, 94(15) (2005) 155501.
[4] C.-S. Oh, Y.-J. Kim, K.-B. Yoon, Coupled analysis of hydrogen transport using ABAQUS, Journal of Solid Mechanics and Materials Engineering, 4(7) (2010) 908-917.
[5] D. Lee, Y. Huang, J. Achenbach, A comprehensive analysis of the growth rate of stress corrosion cracks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2178) (2015) 20140703.
[6] E. Cendales, F. Orjuela, O. Chamarraví, Computational modeling of the mechanism of hydrogen embrittlement (HE) and stress corrosion cracking (SCC) in metals, in:  Journal of Physics: Conference Series, IOP Publishing, 2016, pp. 012067.
[7] H. Lee, S. Kang, J. Choi, M. Kim, An extended finite element method‐based representative model for primary water stress corrosion cracking of a control rod driving mechanism penetration nozzle, Fatigue & Fracture of Engineering Materials & Structures, 41(1) (2018) 138-145.
[8] M. El May, N. Saintier, T. Palin-Luc, O. Devos, O. Brucelle, Modelling of corrosion fatigue crack initiation on martensitic stainless steel in high cycle fatigue regime, Corrosion Science, 133 (2018) 397-405.
[9] J. Capelle, I. Dmytrakh, Z. Azari, G. Pluvinage, Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52, international journal of hydrogen energy, 38(33) (2013) 14356-14363.
[10] J. Capelle, I. Dmytrakh, G. Pluvinage, Comparative assessment of electrochemical hydrogen absorption by pipeline steels with different strength, Corrosion Science, 52(5) (2010) 1554-1559.
[11] L. Yin, Y. Liu, N. Dai, S. Qian, Y. Wan, J. Wu, J. Li, Y. Jiang, Effect of hydrogen charging conditions on hydrogen blisters and pitting susceptibility of 445J1M ferritic stainless steel, Journal of The Electrochemical Society, 165(16) (2018) C1007-C1016.
[12] J. Carreno, I. Uribe, J. Carrillo, Modelling of roughness effect on hydrogen permeation in a low carbon steel, Revista de metalurgia,  (2003) 213-218.
[13] F. Bolzoni, P. Fassina, G. Fumagalli, L. Lazzari, G. Re, Hydrogen charging of carbon and low alloy steel by electrochemical methods, in:  EUROCORR 2010, From the Earth's Depths to Space Heights, 2010, pp. 1-16.
[14] O. Takakuwa, Y. Mano, H. Soyama, The Interaction between Hydrogen and Surface Stress in Stainless Steel, International Journal of Materials and Metallurgical Engineering, 8(12) (2014) 1391-1395.
[15] X. Chang, Y. Yan-sheng, Y. Lin-na, L. Tao, C. Sha, T. Shaolei, W. Jiang, J. Gong, J. Tang, H. Chen, 3-D finite element analysis of the effect of welding residual stress on hydrogen diffusion in hydrogen contained environment, 金属学报英文版, 20(5) (2009) 347-354.
[16] H.-M. Tung, T.-C. Chen, C.-C. Tseng, Effects of hydrogen contents on the mechanical properties of Zircaloy-4 sheets, Materials Science and Engineering: A, 659 (2016) 172-178.
[17] Z. Sheng, C. Altenbach, U. Prahl, D. Zander, W. Bleck, Effect of cutting method on hydrogen embrittlement of high-Mn TWIP steel, Materials Science and Engineering: A, 744 (2019) 10-20.
[18] E. ASTM, Standard test methods for tension testing of metallic materials, Annual book of ASTM standards. ASTM,  (2001).
[19] A. Salarvand, Investigation of the effects of multi-layer hard coatings on the fatigue corrosion behavior of Custom 450 steel, PhD Thesis, Zanjan University, Zanjan, 2016 (In persian).
[20] B. Berkowitz, J. Burton, C. Helms, R. Polizzotti, Hydrogen dissociation poisons and hydrogen embrittlement, Scripta Metallurgica, 10(10) (1976) 871-873.
[21] M. Mohtadi-Bonab, J. Szpunar, L. Collins, R. Stankievech, Evaluation of hydrogen induced cracking behavior of API X70 pipeline steel at different heat treatments, International journal of hydrogen energy, 39(11) (2014) 6076-6088.
[22] M. Yan, Y. Weng, Study on hydrogen absorption of pipeline steel under cathodic charging, Corrosion science, 48(2) (2006) 432-444.
[23] R.K. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons, 2001.