[1] J. Awrejcewicz, A.V. Krysko, M.V. Zhigalov, V.A. Krysko, Size-Dependent Theories of Beams, Plates and Shells, in: J. Awrejcewicz, A.V. Krysko, M.V. Zhigalov, V.A. Krysko (Eds.) Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields: Regular and Chaotic Dynamics of Micro/Nano Beams, and Cylindrical Panels, Springer International Publishing, Cham, 2021, pp. 25-78.
[2] F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002) 2731-2743.
[3] Z. Li, Y. He, J. Lei, S. Guo, D. Liu, L. Wang, A standard experimental method for determining the material length scale based on modified couple stress theory, Int. J. Mech. Sci., 141 (2018) 198-205.
[4] A.R. Askari, M. Tahani, Presenting a size-dependent electro-mechanical model for rectangular plates-based resonant micro-sensors based on modified couple stress theory, J. Modares Mechanical Engineering, 14(8) (2014) 121-130. (In persian)
[5] A. Bakhsheshy, K. Khorshidi, Free vibration of functionally graded rectangular nanoplates in thermal environment based on the modified couple stress theory, J. Modares Mechanical Engineering, 14(15) (2015) 323-330. (In persian)
[6] S.J.-T. OmidDezyani, R., M. Abedi, H. Afrasiab, Vibration analysis of a microplate in contact with a fluid based on the modified couple stress theory, J. Modares Mechanical Engineering, 17(2) (2017) 47-57. (In persian)
[7] s. salehi, O. Rahmani, S.A. Hoseini, Free and forced vibration analysis of Kelvin-Voigt viscoelastic rectangular nanoplate based on the modified couple stress theory, Amirkabir Journal of Mechanical Engineering, 52(1) (2020) 173-186. (In persian)
[8] H. Zeighampour, Y.T. Beni, A shear deformable cylindrical shell model based on couple stress theory, Arch. Appl. Mech., 85(4) (2015) 539-553.
[9] Y. Tadi Beni, F. Mehralian, H. Zeighampour, The modified couple stress functionally graded cylindrical thin shell formulation, Mech. Adv. Mater. Struc., 23(7) (2016) 791-801.
[10] K.S. Al-Basyouni, A. Tounsi, S.R. Mahmoud, Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position, Compos. Struct., 125 (2015) 621-630.
[11] M. Tahani, R.C. Batra, A.R. Askari, Size-dependent free vibrations of electrostatically predeformed functionally graded micro-cantilevers, IOP Conference Series: Materials Science and Engineering, 87(1) (2015) 012117.
[12] Y. Tadi Beni, F. Mehralian, H. Razavi, Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory, Compos. Struct., 120 (2015) 65-78.
[13] H. Zeighampour, M. Shojaeian, Size-dependent vibration of sandwich cylindrical nanoshells with functionally graded material based on the couple stress theory, J. Braz. Soc. Mech. Sci., 39(7) (2017) 2789-2800.
[14] M. Ghadiri, H. SafarPour, Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment, J. Therm. Stresses, 40(1) (2017) 55-71.
[15] M. Ghadiri, H. Safarpour, Free Vibration Analysis of a Functionally Graded Cylindrical Nanoshell Surrounded by Elastic Foundation Based on the Modified Couple Stress Theory, Amirkabir Journal of Mechanical Engineering, 49(4) (2018) 721-730. (In persian)
[16] H. Razavi, A.F. Babadi, Y. Tadi Beni, Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory, compos. Struct., 160 (2017) 1299-1309.
[17] S. Zeng, B.L. Wang, K.F. Wang, Analyses of natural frequency and electromechanical behavior of flexoelectric cylindrical nanoshells under modified couple stress theory, J. Vib. Control, 25(3) (2018) 559-570.
[18] Y. Wang, K. Xie, T. Fu, W. Zhang, A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory, Eur. Phys. J. Plus, 135(1) (2020) 71.
[19] J. Ehyaei, H. Safarpour, E. Shahabinejad, Vibration analysis of a double layer microshell utilizing a modified couple stress theory, Iranian Journal of Mechanical Engineering Transactions of the ISME, 21(1) (2020) 21-44.
[20] S.-S. Yu, W.-T. Zheng, Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons, Nanoscale, 2(7) (2010) 1069-1082.
[21] R. Majidi, K.G. Tabrizi, Study of neon adsorption on carbon nanocones using molecular dynamics simulation, Physica B: Condensed Matter, 405(8) (2010) 2144-2148.
[22] Y.-G. Hu, K.M. Liew, X. He, Z. Li, J. Han, Free transverse vibration of single-walled carbon nanocones, Carbon, 50(12) (2012) 4418-4423.
[23] J. Yan, K.M. Liew, L. He, Ultra-sensitive analysis of a cantilevered single-walled carbon nanocone-based mass detector, Nanotechnology, 24(12) (2013) 125703.
[24] W.-J. Chang, T.-H. Fang, H.-L. Lee, Y.-C. Yang, Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe, Ultramicroscopy, 102(2) (2005) 85-92.
[25] I.-C. Chen, L.-H. Chen, X.-R. Ye, C. Daraio, S. Jin, C.A. Orme, A. Quist, R. Lal, Extremely sharp carbon nanocone probes for atomic force microscopy imaging, Applied Physics Letters, 88(15) (2006) 153102.
[26] Q. Fan, Z. Wang, Y. Cui, Optimal design of an antireflection coating structure for enhancing the energy-conversion efficiency of a silicon nanostructure solar cell, RSC advances, 8(61) (2018) 34793-34807.
[27] M. Toma, A. Belu, D. Mayer, A. Offenhäusser, Flexible gold nanocone array surfaces as a tool for regulating neuronal behavior, Small, 13(24) (2017) 1700629.
[28] L. Qian, R. Batra, Design of bidirectional functionally graded plate for optimal natural frequencies, Journal of Sound and Vibration, 280(1-2) (2005) 415-424.
[29] B. Saleh, J. Jiang, R. Fathi, T. Al-hababi, Q. Xu, L. Wang, D. Song, A. Ma, 30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges, Composites Part B: Engineering, (2020) 108376.
[30] H. Zeighampour, Y. Tadi Beni, Analysis of conical shells in the framework of coupled stresses theory, Int. J. Eng. Sci., 81 (2014) 107-122.
[31] H. Zeighampour, Y.T. Beni, F. Mehralian, A shear deformable conical shell formulation in the framework of couple stress theory, Acta Mech., 226(8) (2015) 2607-2629.
[32] Y. Tadi Beni, F. Mehralian, The effect of small scale on the free vibration of functionally graded truncated conical shells, J. Mech. Mater. Struct., 11(2) (2016) 91-112.
[33] Y. Yuan, K. Zhao, Y. Han, S. Sahmani, B. Safaei, Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model, Thin-Walled Structures, 154 (2020) 106857.
[34] H. Yaghoobi, A. Fereidoon, R. Shahsiah, Thermal Buckling of Axially Functionally Graded Thin Cylindrical Shell, J. Therm. Stresses, 34(12) (2011) 1250-1270.
[35] J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd ed., Taylor & Francis, Philadelphia, 2007.
[36] J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons, New York, 2002.
[37] K. Lam, L. Hua, Influence of boundary conditions on the frequency characteristics of a rotating truncated circular conical shell, Journal of Sound and Vibration, 223(2) (1999) 171-195.
[38] T. Irie, G. Yamada, K. Tanaka, Natural frequencies of truncated conical shells, Journal of Sound and Vibration, 92(3) (1984) 447-453.
[39] F.-M. Li, K. Kishimoto, W.-H. Huang, The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh–Ritz method, Mechanics Research Communications, 36(5) (2009) 595-602.
[40] M. Rahaeifard, M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, Static pull-in analysis of microcantilevers based on the modified couple stress theory, Sensor Actuat. A-Phys. , 171 (2011) 370-374.