مطالعه رفتار بالستیکی پارچه کولار آغشته به سیال غلیظ‌شونده برشی حاوی افزودنی اکسید گرافن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشگاه علم و صنعت ایران- دانشکده مهندسی مکانیک

3 گروه نانوفناوری، دانشکده فناوری های نوین، دانشگاه علم و صنعت ایران،تهران، ایران

چکیده

در این تحقیق تأثیر افزودنی اکسید گرافن در پارچه کولار دارای سیال غلیظ‌شونده برشی متشکل از پلی‌اتیلن گلایکول و سیلیکای کروی تحت بارگذاری بالستیک مطالعه شده است. برای درک بهتر تأثیر نمونه‌های مختلف از سیال غلیظ‌شونده برشی در عملکرد بالستیکی، آزمون بیرون‌کشی الیاف برای ارزیابی اصطکاک بین الیاف انجام شد. میزان افزایش انرژی در آزمون بالستیک برای پارچه دارای سیال غلیظ‌شونده برشی در مقایسه با پارچه ساده 25/8 درصد بود. افزودن اکسید گرافن به سیال غلیظ‌شونده برشی به اندازه 0/2 درصد وزنی سبب شد که میزان افزایش انرژی در مقایسه با پارچه ساده به 23/3 درصد تغییر کند، که این مقدار نشان از اثر تضعیف‌کنندگی اکسید گرافن دارد. نتایج آزمون بیرون‌کشی الیاف با نتایج آزمون بالستیک هماهنگ بود، بدین معنی که با مشاهده افزایش یا کاهش بیشینه نیرو در آزمون بیرون‌کشیِ الیاف، جذب انرژی در آزمون بالستیک به همان ترتیب افزایش یا کاهش می‌یافت. افزودن اکسید گرافن سبب کاهش بیشینه نیرو در مقایسه با نمونه سیال غلیظ‌شونده برشی در آزمون بیرون‌کشی شده که در نتیجه قیود حرکتی الیاف کاهش یافته و حرکت گلوله در پارچه تسهیل می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Study on the Ballistic Behavior of Kevlar Fabric Impregnated with Shear Thickening Fluid Containing Graphene Oxide Additive

نویسندگان [English]

  • Amirhosein Naghizadeh 1
  • Hadi Khoramishad 2
  • Maisam Jalaly 3
1 School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
2 School of Mechanical Engineering, Iran University of Science and Technology
3 Nanotechnology Department, School of Advanced Technologies, Iran University of Science & Technology (IUST), Tehran, Iran
چکیده [English]

In this research, the effects of graphene oxide as an additive to Kevlar fabric impregnated with nanosilica/polyethylene glycol shear thickening fluid on the ballistic performance were investigated. In order to understand the influence of shear thickening fluid, pull-out tests were accomplished to assess the friction between yarns. The energy absorption in the high-impact ballistic test for the fabric impregnated with shear thickening fluid increased by 25.8% compared to that for the neat Kevlar fabric. This parameter for the fabric impregnated with shear thickening fluid-0.2 wt.% graphene oxide was 23.3% as compared with that of the neat fabric, demonstrating the deteriorating effect of graphene oxide additive. The results of the pull-up tests were in agreement with ballistic tests, meaning that the increase or decrease in the maximum forces in pull-up tests was followed by the increase or decrease in the energy absorption in ballistic tests. Compared to the sample impregnated with shear thickening fluid, adding graphene oxide causes the decrease in the maximum force in the pull-up test, resulting in a reduction in restriction of yarns movement, consequently facilitating their movement inside the fabric.

کلیدواژه‌ها [English]

  • Shear thickening fluid
  • Graphene oxide
  • Kevlar
  • Ballistic
[1] V. Tan, C. Lim, C. Cheong, Perforation of high-strength fabric by projectiles of different geometry, International Journal of Impact Engineering, 28(2) (2003) 207-222.
[2] V. Shim, Y. Guo, V. Tan, Response of woven and laminated high-strength fabric to oblique impact, International journal of impact engineering, 48 (2012) 87-97.
[3] A. Majumdar, B.S. Butola, A. Srivastava, An analysis of deformation and energy absorption modes of shear thickening fluid treated Kevlar fabrics as soft body armour materials, Materials & Design, 51 (2013) 148-153.
[4] Y. Wang, X. Chen, R. Young, I. Kinloch, A numerical and experimental analysis of the influence of crimp on ballistic impact response of woven fabrics, Composite Structures, 140 (2016) 44-52.
[5] A. Srivastava, A. Majumdar, B.S. Butola, Improving the Impact Resistance of Textile Structures by using Shear Thickening Fluids: A Review, Critical Reviews in Solid State and Materials Sciences, 37(2) (2012) 115-129.
[6] S. Gürgen, M.C. Kuşhan, The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives, Composites Part A: Applied Science and Manufacturing, 94 (2017) 50-60.
[7] Y. Park, Y. Kim, A.H. Baluch, C.-G. Kim, Numerical simulation and empirical comparison of the high velocity impact of STF impregnated Kevlar fabric using friction effects, Composite Structures, 125 (2015) 520-529.
[8] B.-W. Lee, C.-G. Kim, Computational analysis of shear thickening fluid impregnated fabrics subjected to ballistic impacts, Advanced Composite Materials, 21(2) (2012) 177-192.
[9] A.S. Lim, S.L. Lopatnikov, N.J. Wagner, J.W. Gillespie, Investigating the transient response of a shear thickening fluid using the split Hopkinson pressure bar technique, Rheologica acta, 49(8) (2010) 879-890.
[10] A. Bragov, L. Igumnov, A.Y. Konstantinov, A. Lomunov, F. Antonov, P. Mossakovskii, Impact compressibility of a poly (ethylene glycol)-based nanocomposite fluid, Technical Physics Letters, 40(10) (2014) 923-925.
[11] O.E. Petel, D.L. Frost, A.J. Higgins, S. Ouellet, Formation of a disordered solid via a shock-induced transition in a dense particle suspension, Physical Review E, 85(2) (2012) 021401.
[12] T.A. Hassan, V.K. Rangari, S. Jeelani, Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites, Materials Science and Engineering: A, 527(12) (2010) 2892-2899.
[13] Y. Xu, X. Chen, Y. Wang, Z. Yuan, Stabbing resistance of body armour panels impregnated with shear thickening fluid, Composite Structures, 163 (2017) 465-473.
[14] D.P. Kalman, R.L. Merrill, N.J. Wagner, E.D. Wetzel, Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle−Fluid Suspensions, ACS Applied Materials & Interfaces, 1(11) (2009) 2602-2612.
[15] B.A. Rosen, C.N. Laufer, D.P. Kalman, E.D. Wetzel, N.J. Wagner, Multi-threat performance of kaolin-based shear thickening fluid (STF)-treated fabrics, Proceedings of SAMPE, 3(7) (2007).
[16] Z. Lu, Z. Yuan, X. Chen, J. Qiu, Evaluation of ballistic performance of STF impregnated fabrics under high velocity impact, Composite Structures, 227 (2019) 111208.
[17] O.E. Petel, S. Ouellet, J. Loiseau, D.L. Frost, A.J. Higgins, A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction, International Journal of Impact Engineering, 85 (2015) 83-96.
[18] B.-W. Lee, I.-J. Kim, C.-G. Kim, The Influence of the Particle Size of Silica on the Ballistic Performance of Fabrics Impregnated with Silica Colloidal Suspension, Journal of Composite Materials, 43(23) (2009) 2679-2698.
[19] D. P Kalman, J. B Schein, J. M Houghton, C. H N Laufer, E. D Wetzel, N. Wagner, Polymer dispersion based shear thickening fluid-fabrics for protective applications, 2007.
[20] C.H. Nam, M.J. Decker, C. Halbach, E.D. Wetzel, N.J. Wagner, Ballistic and rheological properties of stfs reinforced by short discontinuous fibers, Proceedings of SAMPE: New Horizons for materials and processing Technologies. Long Beach, CA: SAMPE,  (2005).
[21] S. Gürgen, M.C. Kuşhan, The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids, Polymer Testing, 64 (2017) 296-306.
[22] A. Laha, A. Majumdar, Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics, Applied Clay Science, 132-133 (2016) 468-474.
[23] Z. Tan, W. Li, W. Huang, The effect of graphene on the yarn pull-out force and ballistic performance of Kevlar fabrics impregnated with shear thickening fluids, Smart Materials and Structures, 27(7) (2018) 075048.
[24] F.-F. Wang, Y. Zhang, H. Zhang, L. Xu, P. Wang, C.-b. Guo, The influence of graphene nanoplatelets (GNPs) on the semi-blunt puncture behavior of woven fabrics impregnated with shear thickening fluid (STF), RSC advances, 8(10) (2018) 5268-5279.
[25] M. Hasanzadeh, V. Mottaghitalab, H. Babaei, M. Rezaei, The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics, Composites Part A: Applied Science and Manufacturing, 88 (2016) 263-271.
[26] X. Feng, S. Li, Y. Wang, Y. Wang, J. Liu, Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids, Materials & Design, 64 (2014) 456-461.
[27] W. Huang, Y. Wu, L. Qiu, C. Dong, J. Ding, D. Li, Tuning rheological performance of silica concentrated shear thickening fluid by using graphene oxide, Advances in Condensed Matter Physics, 2015 (2015).
[28] N. Kordani, A.S. Vanini, Optimizing the ethanol content of shear thickening fluid/fabric composites under impact loading, Journal of Mechanical Science and Technology, 28(2) (2014) 663-667.
[29] S. Alikarami, N. Kordani, A. SadoughVanini, H. Amiri, Effect of the yarn pull-out velocity of shear thickening fluid-impregnated Kevlar fabric on the coefficient of friction, Journal of Mechanical Science and Technology, 30(8) (2016) 3559-3565.
[30] C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R.W. Carpick, J. Hone, Frictional characteristics of atomically thin sheets, Science, 328(5974) (2010) 76-80.
[31] D. Berman, A. Erdemir, A.V. Sumant, Graphene: a new emerging lubricant, Materials Today, 17(1) (2014) 31-42.
[32] M. Tomita, T. Van De Ven, The structure of sheared ordered latices, Journal of Colloid and Interface Science, 99(2) (1984) 374-386.
[33] M. Alizadeh, F. Lohrasby, R. Khajavi, N. Kordani, H. Baharvandi, M. Rezanejad, Studying the mechanical properties of composites made of Kenaf-Nylon 66 fabric, silica nanoparticles, and epoxy resin, 2014.
[34] H. Rao, M. Hosur, J. Mayo, S. Burton, S. Jeelani, Stab Characterization of Hybrid Ballistic Fabrics, 2009.
[35] T.J. Kang, K.H. Hong, M.R. Yoo, Preparation and Properties of Fumed Silica/Kevlar Composite Fabrics for Application of Stab Resistant Material, Fibers and Polymers, 11(5) (2010) 719-724.
[36] Y.S. Lee, E.D. Wetzel, N.J. Wagner, The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid, Journal of materials science, 38(13) (2003) 2825-2833.
[37] U. Mawkhlieng, A. Majumdar, D. Bhattacharjee, Graphene Reinforced Multiphase Shear Thickening Fluid for Augmenting Low Velocity Ballistic Resistance, Fibers and Polymers, 22(1) (2021) 213-221.
[38] L. Liu, M. Cai, X. Liu, Z. Zhao, W. Chen, Ballistic impact performance of multi-phase STF-impregnated Kevlar fabrics in aero-engine containment, Thin-Walled Structures, 157 (2020) 107103.